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Representation of visual uncertainty through neural
gain variability
Olivier J. Hénaff 1,4, Zoe M. Boundy-Singer2, Kristof Meding3, Corey M. Ziemba 2 & Robbe L. T. Goris2✉

Uncertainty is intrinsic to perception. Neural circuits which process sensory information must

therefore also represent the reliability of this information. How they do so is a topic of debate.

We propose a model of visual cortex in which average neural response strength encodes

stimulus features, while cross-neuron variability in response gain encodes the uncertainty of

these features. To test this model, we studied spiking activity of neurons in macaque V1 and

V2 elicited by repeated presentations of stimuli whose uncertainty was manipulated in dis-

tinct ways. We show that gain variability of individual neurons is tuned to stimulus uncer-

tainty, that this tuning is specific to the features encoded by these neurons and largely

invariant to the source of uncertainty. We demonstrate that this behavior naturally arises

from known gain-control mechanisms, and illustrate how downstream circuits can jointly

decode stimulus features and their uncertainty from sensory population activity.
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Sensory systems offer a window onto a world that cannot be
known perfectly. Uncertainty about the world can arise
externally, when sensory cues are incomplete or contra-

dictory, or internally, when noise corrupts neural representations.
Ideal perceptual systems take this uncertainty into account: if a
sensory cue is ambiguous, prior experience guides its inter-
pretation1, and when multiple cues are available, they are com-
bined in proportion to their reliability2. When humans and other
animals perform perceptual tasks, they often follow these nor-
mative predictions3–6.

These behavioral effects imply that the neural circuits which
mediate perception assess the uncertainty of sensory information.
How they do so is unclear. A prominent hypothesis is that the
same neurons that encode a stimulus feature also encode the
uncertainty about this feature7–9. However, which aspect of
neural activity represents uncertainty remains a topic of debate. It
has been argued that response variability is a promising candi-
date9. In visual cortex, it is maximal in the absence of a stimulus10
and declines with contrast11, aperture size12, and attention13,14.
Since each of these factors is associated with increased informa-
tion about the visual environment, response variability might
represent stimulus uncertainty.

Here, we incorporate this hypothesis into the canonical model
of neural coding. We propose that, while average response
magnitude encodes stimulus features, variability in response gain
encodes the uncertainty of these features. We formalize this
proposal in a doubly stochastic response model in which spikes
arise from a Poisson process whose rate is the product of a
deterministic response mean and a stochastic response gain. The
mean response is governed by a parametric function commonly
referred to as the classical receptive field. We introduce a second
function, the uncertainty receptive field, which determines the
variance of the response gain.

To test our theory, we studied responses of individual
orientation-selective neurons in macaque visual cortex, driven by
repeated presentations of stimuli whose orientation uncertainty
was manipulated in two different ways. As predicted, we found
that gain variability selectively depends on stimulus uncertainty,
and that this selectivity is roughly invariant to the source of
uncertainty. This appears to be a general property of visual
coding: we find that the gain variability of texture-selective neu-
rons in V2 systematically increases with an image’s textural
uncertainty. To identify the neural computation that gives rise to
this behavior, we developed a probabilistic model of divisive
normalization in which driving input is divided by noisy sup-
pressive inputs. This model quantitatively matches the effects of
stimulus uncertainty on response variability.

Finally, we asked whether our coding scheme permits down-
stream circuits to quickly decode the information needed for
perceptual tasks. We find that neuronal gain exhibits slow
dynamics, not fast. Consequently, gain variability cannot be
readily decoded from individual neurons. We derived an optimal
decoder of neural population activity, and used model simula-
tions to investigate its performance. We show that stimulus
orientation and gain variability can be jointly decoded from a
brief V1 population response and that gain variability faithfully
predicts the accuracy of orientation decoding. Together, these
results establish cross-neuron variability in response gain as a
candidate currency of uncertainty in sensory cortex.

Results
Expanding the canonical model of neural coding. In primary
visual cortex (V1), neurons are tuned for local image orientation,
making this area well suited to inform perceptual orientation
estimates. An effective estimation strategy is to consider the

probability of each possible orientation given the V1 population
response, and select the value that is most likely. However,
because of internal and external noise, this likelihood function
and the resulting orientation estimates vary from trial to trial
(Fig. 1a, left). The lower the signal-to-noise ratio, the greater the
uncertainty, and the greater the variance of the estimate (Fig. 1a,
right).

Many perceptual tasks require that the uncertainty of
perceptual estimates be assessed on a moment-by-moment basis.
How can downstream circuits instantaneously assess the
reliability of V1 orientation reports? Since this reliability varies
systematically with certain features of the stimulus such as the
size and contrast of a local image patch, V1 neurons might
encode reliability through a separate channel tuned to these
features9. Specifically, let us assume that a neuron’s response is in
part governed by a deterministic function of the stimulus f(S) (the
classical receptive field) and in part by noise (Fig. 1b, top branch).
Previous work has shown that spike counts K are well described
by a modulated Poisson process whose rate is the product of f(S)
and a stochastic response gain G15. In particular, if the gain G has
a unit mean and varies on a time-scale which is slow relative to
the measurement interval Δt, spike-count variance can be
decomposed as

Var½KjS;Δt" ¼ f ðSÞΔt þ σ2G f ðSÞΔtð Þ2: ð1Þ

The first term is the variance due to the Poisson process, the
second is due to variability in the firing rate and grows with the
variance of the gain σ2G. Whereas this gain variance was originally
assumed to be stimulus independent15, we propose that it
systematically depends on the stimulus via an uncertainty
receptive field u(S) (Fig. 1b, bottom branch). If the uncertainty
receptive field is selective for stimulus features that induce
uncertainty, gain variability may provide a useful assay for the
reliability of V1 orientation reports.

The classical receptive field is associated with two key
properties: it endows sensory neurons with a particular selectivity
and a particular invariance. For example, the firing rate of V1
complex cells reports the total amount of energy in a particular
orientation range, irrespective of the image’s polarity or precise
location within the receptive field16. We hypothesize that the
computations underlying the uncertainty receptive field achieve a
similar effect. Specifically, we expect that the gain variability of
sensory neurons reports the total amount of uncertainty about the
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Fig. 1 Encoding information for perceptual tasks. a An effective strategy
for estimating a perceptual quantity such as local image orientation is to
compute the likelihood of each possible stimulus value (gray lines) and
choose the most likely option (θ̂, black dots). Due to noise, this value will
differ across trials (full vs dotted lines, θ̂i vs θ̂j). The larger the uncertainty
of the sensory information, the wider the likelihood function, and the
greater the variance in the perceptual estimate (left vs right panel). The
variance of this maximum-likelihood estimate σ2

θ̂
is larger than or equal to

the inverse of the Fisher information Iθ20. b Schematic summarizing the
proposed model. Spikes arise from a Poisson process whose rate is the
product of a deterministic drive f(S) and a stochastic gain G. f(⋅) governs
the mapping of stimulus features onto drive and hence controls response
mean; u(⋅) governs the mapping of stimulus uncertainty onto gain
variability and hence controls response variance.
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features they represent, while being invariant to the source of this
uncertainty.

Testing the theory in visual cortex. To test our theory, we
analyzed responses of neurons in macaque visual cortex elicited
by mixtures of sinusoidal gratings (Fig. 2a; a model-based analysis
of these data concerned with mechanisms of orientation selec-
tivity has been previously published17). These stimuli are
Gaussian-distributed in the orientation domain, hence the per-
ceptual uncertainty about their orientation depends on only two
factors: the total amount of stimulus energy (contrast), and its
dispersion (spread). Indeed, increasing stimulus spread increases
perceptual discrimination thresholds because it acts as external
orientation noise18. Reducing stimulus contrast has the same
effect because it exposes internal noise19.

These behavioral effects are mirrored by changes in coding
capacity at the level of individual neurons. Consider the
orientation information encoded in the response of an example
neuron to a narrowband stimulus. Reducing stimulus contrast
from 100 to 33% approximately halved this neuron’s mean
response (Fig. 2b). To determine the impact of this loss of
responsivity, we estimated the Fisher information associated with
both conditions (Iθ, see Online Methods). This statistic quantifies
the amount of orientation information that can be extracted from
the neuron’s responses by an optimal decoder. Specifically, its
inverse provides a lower bound on the variance of the maximum-
likelihood estimate20, and we use it here as a proxy for orientation
uncertainty. For the high-contrast stimulus, the Fisher informa-
tion was 7.03; for the low-contrast stimulus, it was 2.46 (Fig. 2b).

For this neuron, the contrast reduction thus led to a substantial
increase in orientation uncertainty. Increasing stimulus spread
had the same effect (Fig. 2b), which was evident both at high and
low contrast (Fig. 2c).

Are these changes in stimulus uncertainty reflected in the
neuron’s gain variability? We used the modulated Poisson model
to estimate gain variability for each stimulus family separately
(Online Methods). For the narrowband stimulus, gain variability
was greater at low contrast than at high contrast (Fig. 2d; σG=
0.10 at high contrast, σG= 0.25 at low contrast). Moreover, gain
variability also increased with stimulus spread, irrespective of the
contrast level (Fig. 2e). Across all stimulus families, orientation
uncertainty and gain variability exhibited a striking quantitative
relationship (r= 0.90, P < 0.001; Fig. 2f).

The dependency of gain variability on stimulus uncertainty was
evident across the population of V1 and V2 neurons. There was
some heterogeneity in the effects of the stimulus manipulations
on neurons’ responses17, but overall, both manipulations
substantially increased orientation uncertainty (stimulus contrast:
P < 0.001, F1,783= 48.18, ANCOVA; stimulus spread: P < 0.001,
F1,783= 188.72). This can be clearly seen in the stimulus
uncertainty estimates, averaged across neurons (Fig. 3a). More-
over, the uncertainty manipulations did not interact significantly
(P= 0.86, F1,783= 0.03; Fig. 3a), suggesting that they indepen-
dently contribute to stimulus uncertainty. The average gain
variability was monotonically related to the average uncertainty
value (Fig. 3b). This suggests that gain variability may represent
the total amount of stimulus uncertainty, regardless of the source
of this uncertainty (stimulus contrast: P < 0.001, F1,783= 94.13,
ANCOVA; stimulus spread: P < 0.001, F1,783= 32.58). Closer

S
tim

ul
us

 c
on

tr
as

t (
%

)

Stimulus spread (deg)

d

1.0

10

100

1000

Mean (spikes)

V
ar

ia
nc

e 
(s

pi
ke

s2 )

10 1001.0 1000

c = high
c = low

!G = 0

!G = 0.25

!G = 0.10

e

a

1 10 100

0

0.15

0.45

G
ai

n 
va

ria
bi

lit
y 

(!
G
)

Stimulus spread (deg)

0.30

c

1 10 100

0.1

1.0

10.0

 O
rie

nt
at

io
n 

un
ce

rt
ai

nt
y 

(1
/I θ

)

Stimulus spread (deg)

c = low

b

−180 0 180

0

60

120

R
es

po
ns

e 
(ip

s)

Orientation (deg)

f

0 0.30 0.45
Gain variability (!G)

Ie= 7.03 

0.15

0.1

1.0

10.0

 O
rie

nt
at

io
n 

un
ce

rt
ai

nt
y 

(1
/I θ

) r = 0.90, P < 0.001

100

33

5 30

Ie= 2.46 c = high

c = low

c = high

Ie= 0.82

Spread

C
on

tr
as

t

Fig. 2 Estimating stimulus uncertainty and gain variability. a Each stimulus consisted of a sum of drifting sinusoidal gratings, with drift directions drawn
from a Gaussian distribution. Stimuli differed in center drift direction (16 levels), spread (5 levels, represented by hue), and contrast (2 levels, represented
by saturation). bMean responses of a V1 neuron as a function of drift direction for three stimulus families. Responses were computed by counting spikes in
a 1000ms window following response onset. From these tuning curves, we estimated Fisher Information (Iθ, see online Methods). We use its inverse as a
measure of orientation uncertainty. c Orientation uncertainty as a function of stimulus contrast and spread for the example neuron. d Variance-to-mean
relation of the example neuron for the narrowband stimuli. Different points indicate different drift directions. Lines illustrate the predictions of the
modulated Poisson model, fit separately to the high- and low-contrast conditions. e Gain variability as a function of stimulus contrast and spread for the
example neuron. f Orientation uncertainty as a function of gain variability for the example neuron (r = 0.90, P < 0.001).
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examination of the behavior of individual neurons revealed that
for most units, orientation uncertainty and gain variability are
positively correlated (median r= 0.49, P < 0.001, Wilcoxon
signed rank test; Fig. 3c).

Are these results unique to gain variability, or are other
measures of the dispersion of neuronal responses also indicative
of stimulus uncertainty? For each neuron, we compared two
different statistics: gain variability and Fano factor (defined as the
ratio of the spike-count variance to the mean, see Online
Methods). While gain variability was positively associated with
uncertainty (r= 0.40 ± 0.04, mean ± s.e.m.; Fig. 3d), Fano factor
exhibited no systematic relation with uncertainty (r=
−0.06 ± 0.05). Why is this so? The more uncertain stimulus
conditions are associated with reduced responsiveness and
increased gain variability. Together, these effects can make the
Fano factor detached from stimulus uncertainty (Supplementary
Fig. 1).

Finally, we asked whether the gain variability of individual
neurons is tuned to stimulus uncertainty per se, or to a subset of
the stimulus features that induce uncertainty. We singled out the
most extreme stimulus manipulations, both of which induced
substantial amounts of uncertainty (minimal spread at low
contrast and maximal spread at high contrast). Could it be that
different subsets of neurons are selective for each of these
manipulations? This would question the existence of a monolithic
uncertainty receptive field. We summarized each neuron’s
selectivity for these manipulations by measuring the change in
gain variability relative to the baseline condition (minimal spread
at high contrast, see Online Methods). This statistic equals one if
the stimulus manipulation increases gain variability by a factor of
ten, and zero if the stimulus manipulation has no effect on gain
variability (negative values indicate a decrease in gain variability).
Interneuronal differences in selectivity for both manipulations
were highly correlated (r= 0.69, P < 0.001; Fig. 3e). This
approximate invariance to the source of uncertainty suggests
that a single mechanism could account for the uncertainty
selectivity exhibited by cortical neurons.

Representation of uncertainty across the visual hierarchy. We
have, thus far, found evidence for our proposed coding scheme in
the relationship between orientation uncertainty and the gain
variability of orientation-selective neurons. Our model is not
limited to orientation coding, but holds that as new features are
encoded along the visual hierarchy, so is their associated uncer-
tainty. In area V2, neurons are selective for the features of visual

texture, a property lacking from their V1 inputs21. Our frame-
work therefore predicts that the gain variability of V2 cells, but
not V1 cells, will depend on uncertainty about stimulus texture.
To test this prediction, we analyzed responses of individual
neurons in macaque V1 and V2 elicited by a set of naturalistic
textures and a set of unstructured noise stimuli (Fig. 4a–c; data
collected by ref. 22). The noise stimuli were devoid of distinctive
textural features and hence induce maximal textural uncertainty
—just like a uniformly dispersed stimulus would induce maximal
orientation uncertainty. As predicted, noise stimuli typically eli-
cited more gain variability than texture stimuli in V2 (median
selectivity of gain variability for textural uncertainty in V2=
0.063, P < 0.001; Fig. 4d, e; see Online Methods). Neurons in
V1 showed no such effect (median selectivity of gain variability in
V1= 0, P= 0.31; Fig. 4e). These effects are specific to gain
variability and do not generalize to Fano factor (Fig. 4f). We
conclude that, as neurons’ mean firing rates become selective for
increasingly complex features of the visual environment, so does
their gain variability for the associated uncertainty.

The uncertainty receptive field arises from normalization.
Which neural mechanism is general enough to support the
representation of uncertainty across the visual hierarchy? Divisive
normalization is a promising candidate for several reasons. First,
this computation is implemented by a wide range of sensory and
non-sensory circuits23. Second, normalization directly controls
neural response gain, and hence might also control gain varia-
bility. Finally, divisive normalization can be instantiated in image-
computable models (i.e., models that can be evaluated on arbi-
trary images)17,24,25, making this a broadly testable hypothesis.
We derived a stochastic formulation of the standard divisive
normalization model (Fig. 5a; a related model was recently pro-
posed in a separate context26). The mean response of this model
f(S) is approximately equal to the deterministic version of the
normalization model:

f ðSÞ ¼ gðSÞ
βþ

P
jgjðSÞ

 !p

; ð2Þ

where g(S) is some function of the stimulus, β is a stimulus-
independent constant, and p is a transduction exponent. The
stimulus-dependent normalization factor ∑j gj(S) reflects the
aggregate activity of a large number of nearby neurons. Neural
activity is noisy. We therefore make the normalization term
subject to additive Gaussian noise with zero mean and variance
σ2N . This makes the firing rate subject to stochastic gain
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fluctuations, and yields a simple approximate expression for gain
variability (see Online Methods):

σG ¼ σN ' p
βþ

P
jgjðSÞ

: ð3Þ

Under this model, gain variability depends on the same nor-
malization factor as the mean firing rate, and a single new
parameter, the noise in the normalization signal σN. While this
noise does not depend on the stimulus, the normalization com-
putation causes gain variability to be stimulus dependent.

Qualitatively, this model recapitulates the trends in our data.
Increasing stimulus contrast increases the normalization signal
and therefore decreases gain variability (Fig. 5b). Increasing
stimulus spread has the opposite effect: given a normalization
pool composed of narrowly tuned neurons, the normalization
signal decreases with spread, thereby increasing gain variability
(Fig. 5b).

To test whether this stochastic normalization model quantita-
tively captures the effects of stimulus uncertainty, we fit the model
to half of the data and evaluated its predictions on the other half.
Specifically, we fit the only free parameter σN to the average gain
variability measured for the high-contrast stimuli (all other
parameters were separately fit to neurons’ mean responses, see
Online Methods). This single parameter allowed the model to
account for the dependency of gain variability on stimulus spread

(Fig. 5c, full line; P= 0.17, two-sided absolute goodness-of-fit
test). Keeping this parameter constant, we predicted gain
variability for the low-contrast stimulus conditions. The model
correctly predicted the magnitude of the increase in gain
variability (Fig. 5c, dashed line; P= 0.57). The uncertainty
receptive field could therefore be the functional consequence of
a stochastic normalization computation.

Gain variability exhibits slow dynamics, not fast. Does gain
variability arise from a modulatory process with fast or slow
temporal dynamics? If the uncertainty receptive field is the con-
sequence of a stochastic normalization signal, then gain dynamics
will follow the dynamics of this signal. The normalization signal
arises from a spatial and temporal summation of nearby neural
activity23. The spatial summation will cause gain variance to track
the stimulus energy. However if the stimulus changes slowly (or is
constant, as in our experiments) the temporal summation will
impart slow dynamics on individual neurons. This would in turn
imply that information about stimulus uncertainty can only be
transmitted by the joint activity of a sufficiently large population
of neurons, not by individual neurons9. Crucially, fast and slow
modulatory processes have different statistical signatures. If the
dynamics are fast, the measured variance-to-mean relation will
depend on the duration of the counting window. The larger the
counting window, the more within-trial gain variability will be
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averaged out, reducing the strength of measured gain fluctuations.
In contrast, for a modulatory process with slow dynamics, there is
no within-trial gain variability, causing the measured gain fluc-
tuations to be independent of the duration of the counting
window27.

To address this question, we assume that stimulus-independent
gain G is constant within temporal intervals of duration ΔT, but
varies independently across such intervals. If this duration is longer
than all measurement intervals Δt (hereafter “slow” dynamics), we
recover the variance-to-mean relationship described previously,
which is independent of the counting window:

Var½KjS;Δt" ¼ λþ σ2Gλ
2; ð4Þ

where λ = f(S)Δt is the mean spike count. In contrast, when ΔT is
smaller than the shortest counting window (hereafter “fast”
dynamics), the quadratic term is dampened by the counting
window Δt:

Var½KjS;Δt" ¼ λþ σ2Gλ
2 ΔT
Δt

: ð5Þ

To determine whether gain fluctuations exhibit fast or slow
temporal dynamics, we fit these two different versions of the

modulated Poisson model to the same set of neuronal responses.
We computed spike counts using differently sized counting
windows (Fig. 6a), and then fit the resulting family of variance-to-
mean relations imposing either fast or slow dynamics (Fig. 6b).
We measured the goodness-of-fit of each model by computing its
log likelihood, and then compared both models. A recovery
analysis revealed that this method distinguishes fast from slow
dynamics with an accuracy of 90.15% (see Online Methods). Each
unique stimulus family constitutes one point of comparison for
each neuron, yielding a total of 780 data points (78 neu-
rons × 10 stimulus families). Variance-to-mean relations were
typically best described as being independent of the counting
window. This is evident from the responses of an example
neuron. For example, notice how the fast gain dynamics model
misses all the data measured with the largest counting window
(Fig. 6b, right panel, blue color). Fitting the model exclusively to
those data caused it to miss those measured with smaller counting
windows (Supplementary Fig. 2). The distribution of log-
likelihood differences across the population supports the same
conclusion (Fig. 6c; slow dynamics preferred for 85.5% of
conditions, median LL difference=−23.4, median LL difference
for null model= 2.27, P < 0.001, Wilcoxon signed rank test, see
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Online Methods). In sum, gain variability is much more likely to
arise from a slow modulatory process. In such a process,
individual neurons communicate a single gain value per trial.
Measuring gain variability requires multiple gain values. As a
consequence, gain variability cannot be decoded on a trial-by-trial
basis from the activity of a single neuron.

Decoding image features and uncertainty from neural activity.
Organisms have to interpret the environment almost immedi-
ately. Sensory circuits must therefore report stimulus features and
their associated uncertainty on a moment-to-moment basis.
Given that neuronal gain fluctuates slowly, does our proposed
coding scheme enable both to be decoded quickly from sensory
population activity? We investigated this using model simulations
based on our experimental findings. Specifically, we simulated the
activity of a population of V1 neurons whose mean firing rate and
gain variability resulted from the stochastic divisive normalization
model (see Online Methods, Fig. 7). As in cortex, model neurons
varied in their orientation preference and dynamic range. For
simplicity, we assumed that the magnitude of normalization noise
did not differ across neurons. Consequently, the uncertainty
receptive field of all neurons had the same tuning, matching our

empirical estimate (Fig. 5c). The model population thus
instantiates an idealized version of the neurons we recorded from.

Consider the population response to a briefly presented stimulus
(Fig. 7). Stimulus orientation θ is encoded in the neurons’ average
response magnitudes {λi}, and stimulus uncertainty is represented
by cross-neuron variability in response gain σG. We derived the
likelihood function for a population of independent, modulated
Poisson neurons and used it to determine the maximum-likelihood
stimulus estimate (Fig. 7, see Online Methods). This estimate
contains the most likely stimulus orientation and, through the
uncertainty receptive field, the associated level of gain variability.
These estimates θ̂ML and σ̂G provide a useful indication of how
much information regarding stimulus orientation and uncertainty is
contained in the population response.

We varied stimulus orientation and uncertainty by manipulat-
ing contrast and spread across trials and asked how well each
could be decoded from the population response on a trial-by-trial
basis. For a population of 250 neurons, stimulus orientation could
be decoded near perfectly when stimulus contrast was high
(Fig. 8a, red symbols), but less so when contrast was low or the
spread was high (Fig. 8a, non-red symbols). This difference in
performance was tracked by the simultaneously decoded gain
variability. Specifically, when gain variability estimates were low,
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Fig. 7 Decoding population activity. We simulated the activity of V1 populations whose mean firing rate and gain variability was governed by the
stochastic normalization model. Each unit's stimulus preference and dynamic range was chosen randomly. We used an iterative procedure to decode the
most likely stimulus features (orientation, contrast, and spread) from the population activity. The uncertainty receptive field connects these feature
estimates to an associated gain variability estimate (Fig. 5b).
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the error in orientation decoding tended to be small (Fig. 8b). But
when gain variability estimates were high, the error in orientation
decoding could be substantial (Fig. 8b; r= 0.99). Gain variability
estimates thus provide an instantaneously available assay of the
reliability of the V1 orientation report.

In the example we considered, the decoder had access to
population activity realized over a one-second stimulus epoch.
Moreover, all gain variability was statistically independent
across neurons, in keeping with our decoder’s assumption.
Decoding conditions will often be less favorable: fixations
typically last only a few hundred milliseconds28, and gain
fluctuations can be partly shared across neurons15,29,30. We
wondered whether decoded gain variability would still be
strongly associated with stimulus uncertainty when read-out
time was limited and gain fluctuations were correlated. Fig. 8c
illustrates the evolution of this association with read-out time,
for different levels of gain correlation. Even under the most
challenging conditions—read-out time less than 100 ms and
two thirds of gain variance shared across neurons—the
association remained substantial (Fig. 8c). We conclude that
our coding scheme enables robust decoding of stimulus features
and their uncertainty from sensory population activity under
physiologically realistic conditions.

How might neural circuits decode gain variability? The
maximum-likelihood estimator cannot be computed in closed
form and its biological plausibility can therefore be questioned.
However there might exist heuristic estimators that only rely on
simple, neurally plausible computations. We conceived of one
such option. Primate visual cortex exhibits a columnar organiza-
tion (Fig. 9a). Neurons within the same column share the same

stimulus selectivity and thus constitute a functional sub-
population (Fig. 9b). Super-Poisson interneuronal variance within
each sub-population can therefore be directly attributed to gain
variability (Fig. 9c). This enables estimating σ̂G through a simple
heuristic that only relies on common neural computations such as
sums, squares, and division (Fig. 9c, see Online Methods). For our
idealized population, this heuristic estimator of σ̂G closely tracks
the true value (Fig. 9d).

Discussion
We have proposed a new model of canonical computation in
sensory cortex, which incorporates the hypothesis that neurons
report features of the environment and the reliability of this
message through two different communication channels: the
mean spike count and its variance9. For example, a change in
stimulus orientation might alter the mean firing rate of a V1
neuron, but it will not change its gain variability. A change in
orientation noise will alter the neuron’s gain variability, but need
not change its mean response. We propose that cortical neurons
behave as if two different receptive fields underlie these response
statistics. We have shown that this behavior naturally arises from
known gain-control mechanisms, and does not require an explicit
probabilistic inference computation to estimate stimulus uncer-
tainty. We find that gain dynamics are slow relative to behavioral
time-scales, hence gain variability cannot be communicated
quickly by individual neurons. Nevertheless, we have shown
through model simulations that this coding scheme enables
sensory populations to rapidly report stimulus features and their
uncertainty to downstream circuits, even when gain variability is
highly correlated across neurons.

Our framework extends, refines, and potentially bridges two
alternative theories for the representation of uncertainty in cortex:
probabilistic population codes (PPC), and the sampling hypoth-
esis. The various instantiations of these theories differ in three
respects: their use of response variance to represent uncertainty,
whether information is represented across time or across neurons,
and whether inference is performed in a feedforward manner or
through iterative, recurrent computation. In highlighting the
importance of gain variability in encoding stimulus uncertainty,
our results show that purely mean-based codes7 cannot provide a
full account of the neural representation of uncertainty, and are
aligned with the sampling hypothesis9 in this respect, although
this behavior can also arise in non-linear population codes31–33.
There is some evidence that sensory systems exploit this extra
bandwidth. For example, when an observer pays attention to a
visual stimulus, perceptual uncertainty can be greatly reduced34.
In early visual cortex, this behavioral effect is associated with a
mild increase in mean response35, and a comparatively strong
reduction in response variability14. Moreover, visual attention
appears to achieve these effects by employing sensory normal-
ization mechanisms36,37 and specifically reduces neural gain
variability30,38.

On the other hand, in showing that gain dynamics are slow,
our results dispute the notion of temporal representations of
uncertainty9 and are aligned with population-based representa-
tions7, as well as spatial variants of the sampling hypothesis39.
Our view also differentiates itself from most sampling-based
models, which require iterative, recurrent computation to per-
form accurate inference40–42. In contrast, our model can express
uncertainty through purely feedforward computations, aligning it
with population-based codes and canonical models of neural
computation23,43,44. Note that our model seeks to describe
functional transformations, not the neural mechanisms that
implement them—these may rely on recurrent interactions45.
This conceptual simplicity offers practical benefits, as it allowed
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us to straightforwardly fit the uncertainty receptive field to
V1 spiking data (Fig. 5c), and to jointly decode stimulus features
and their uncertainty from population activity (Fig. 8c). None-
theless, our feedforward model could be augmented with a
recurrent mechanism—in particular to account for behavioral
and contextual effects on neural variability46–49—an approach
that has been shown to combine the advantages of both in
machine inference50.

To test our model, we relied on stimulus manipulations that
impair perceptual orientation judgments, and we verified that
they reduced the coding capacity of orientation-selective neurons
(Fig. 2c, Fig. 3a). Ideally, both sets of measurements would be
obtained simultaneously, as this could establish a direct rather
than indirect link between neural and behavioral levels. If our
model is correct, gain variability should be predictive of errors in
perceptual orientation estimates that arise from externally
induced stimulus uncertainty. An even stronger test of our fra-
mework would be to investigate whether this relationship also
holds across repetitions of identical stimuli, where differences in
estimation error are solely due to internal noise fluctuations.

Even in the absence of such data, our approach can directly be
extended to other stimulus features, visual areas, and sensory
systems to investigate the generality of the uncertainty receptive
field. As a first step, we have shown that V2 cells, whose mean
firing rate is selective for textural properties21, modulate their
gain variability according to uncertainty in visual texture. Cru-
cially, V1 cells, which lack this selectivity, also fail to report this
uncertainty. This suggests that, along a sensory processing cas-
cade, selectivity for novel stimulus features and an assessment of
their reliability jointly emerge. Why is this so? The sensory
neurons that are the first in the hierarchy to represent a particular
feature are uniquely positioned to judge the quality of the evi-
dence for that feature. Downstream areas can inherit the feature
report, but neural stochasticity entails that uncertainty about this
feature can only grow along the hierarchy. Consistent with this,
visual areas downstream of V1 exhibit orientation selectivity, but
this selectivity is accompanied by systematically increasing levels
of gain variability15.

Our model focuses on gain variability, a specific component of
neural response variability. In our framework, alternative mea-
sures of response dispersion such as Fano factor do not reflect
stimulus uncertainty because they depend on the strength of the
stimulus drive and the duration of the count window (Fig. 3d,
Fig. 4f, Supplementary Fig. 1). Nevertheless, changes in response
gain are a statistical description of neural activity, and are not
observed directly. At a mechanistic level they may arise either
from fluctuations in neuromodulation or in membrane poten-
tial51. A new set of measurements, including intracellular phy-
siology, therefore seem necessary to resolve the mechanistic
origin of gain variability.

Our results offer a novel view of the structural organization of
sensory cortex. Its columnar organization has been known for
many decades16,52,53, yet the computational benefit of this
structure has remained elusive54. In our coding scheme, esti-
mating interneuronal gain variability is facilitated by the presence
of sub-populations of sensory neurons that share the same sti-
mulus selectivity (Fig. 9). In particular, this allows a decoder to
infer stimulus uncertainty without detailed knowledge of the
sensory neurons’ classical receptive field. Whether downstream
circuits actually employ this read-out scheme can only be ascer-
tained from an awake, behaving paradigm that requires taking
stimulus uncertainty into account. A recent study of this kind
found that orientation uncertainty represented by V1 populations
(estimated using a flexible, model-agnostic approach) does indeed
inform animals’ choice behavior33. We believe that this paradigm
can be leveraged to test our and other theories, and will ultimately

uncover which aspect of neural activity informs perceptual
uncertainty estimates.

Finally, our results reveal a strong connection between biolo-
gical and machine inference under uncertainty. Recent years have
witnessed the development of a new class of highly scalable
artificial inference methods55,56. Like our coding scheme, these
methods forfeit exact inference which often requires costly
iterative procedures57 in favor of simple, parametric approx-
imations that can be computed in a feedforward manner. The
resulting efficiency and scalability have enabled progress in highly
complex problems such as scene understanding58, autonomous
navigation59–61, and robotic manipulation62. Biological systems
face similarly complex tasks and environments, and may also
have opted for inference methods that are simple and powerful.

Methods
Physiology. The data analyzed here were previously published, and the full
methods are provided there (see ref. 17 for the orientation experiment, and ref. 22
for the texture experiment). In brief, all recordings were made from anesthetized,
paralyzed, adult macaque monkeys. Surgical preparation methods are reported in
detail in (ref. 63). Anesthesia was maintained with infusion of sufentanil citrate
(6–30 g kg−1 h−1) and paralysis with infusion of vecuronium bromide (Norcuron;
0.1 mg kg−1 h−1) in isotonic dextrose-Normosol solution. All experiments were
conducted in compliance with the NIH’s Guide for the Care and Use of Laboratory
Animals, and with approval of the New York University Animal Welfare Com-
mittee. Extracellular recordings from individual neurons were made with quartz-
platinum-tungsten microelectrodes (Thomas Recording), advanced mechanically
into the brain through a craniotomy and small durotomy. V1 was distinguished
from V2 on the basis of depth from the cortical surface and changes in the
receptive field location of the recorded units.

Visual stimulation. In the orientation experiment, stimuli consisted of Gaussian
orientation mixtures, created by summing nine sinusoidal gratings whose orien-
tations were spaced at 20∘ intervals and whose orientation-dependent contrasts
followed a circular Gaussian profile centered on a particular orientation (spread
0–55∘). The drift rate of each stimulus component was selected at random from a
Gaussian distribution centered on the preferred rate, with a standard deviation
equal to 1/5 this value, resulting in an incoherently drifting mixture. In total, ten
stimulus families (five spread levels × two contrast levels) were presented at 16
different orientations.

In the texture experiment, stimuli were generated using the texture analysis-
synthesis procedure introduced by64. Fifteen different grayscale photographs of
visual texture served as prototypes. From each of these source images, two sets of
15 samples were synthesized (one set of “naturalistic textures”, and one set of
“unstructured noise stimuli”). The naturalistic textures preserved the spectrum of
the original image, as well as correlations across the output of filters tuned to
different positions, scales, and orientations; the noise stimuli preserved only the
spectrum22.

In both experiments, stimuli were presented in random order for either 1000 ms
(orientation experiment) or 100 ms (texture experiment), and typically repeated 10
times (orientation experiment) or 20 times (texture experiment).

Data analysis. For all analyses of the orientation experiment but one, we counted
spikes within a 1000 ms window following response onset. One analysis sought to
compare spiking models with slow vs fast gain dynamics (Fig. 6). Here, we used five
different counting windows (62.5, 125, 250, 500, and 1000ms). For the analysis of
the texture experiment, we computed spike counts using a 100 ms window aligned
to the response onset.

Quantifying neural stimulus uncertainty. Using standard tools from information
theory20, we quantified neural stimulus uncertainty in the orientation domain as
the inverse of a neuron’s Fisher Information for a given stimulus family. If neural
responses arise from a Poisson process, this statistic can be simply written as a
function of the measured tuning curve h(θ):

1
Iθ

¼ Eθ
h02ðθÞ
hðθÞ

! "(1

; ð6Þ

where h0ðθÞ is the derivative of the tuning curve (ref. 65). This statistic has the
benefit that its value only depends on the measured mean responses, and is
independent of the level of gain fluctuations. Associations between gain variability
and stimulus uncertainty (Fig. 2f, Fig. 3b, c) can thus not arise for trivial reasons.
This is not true of alternative estimators of uncertainty which rely on empirical
measurements of response variance rather than a Poisson assumption.
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Measuring gain variability. We measured gain variability using the method
introduced by ref. 15. Specifically, we described responses of individual neurons
with a model in which spikes are generated by a Poisson process whose rate is the
product of a stimulus-dependent drive and a stimulus-independent gain. We
assumed that gain is constant within a trial and distributed across trials according
to a gamma distribution with mean 1 and variance σ2G. We estimated this para-
meter by maximizing the likelihood of the full set of observed spike counts for a
given stimulus family under a negative binomial distribution15 (Fig. 2d, Fig. 4c).

We computed the selectivity of gain variability for induced stimulus uncertainty
(Fig. 3d, Fig. 4d) by taking the common logarithm of the ratio of two σG estimates:
one measured in the presence of the uncertainty-inducing manipulation
(numerator), and one measured in its absence (denominator). For the texture
experiment, we performed a significance test on this statistic (Fig. 4c, inset). For
each neuron, we obtained a null distribution by first estimating gain variability
from the combination of all stimulus conditions. Next, we used this value and the
empirically observed mean responses to simulate 100 synthetic datasets. For each
synthetic dataset, we then separately estimated gain variability for responses to
texture and noise stimuli. We used these values to compute the distribution of the
selectivity-index to be expected if there were no underlying difference in gain
variability between texture and noise stimuli (estimated from 1002 samples per
neuron). Because gain variability is a positive-valued statistic, estimation error can
introduce a bias that depends on the magnitude of the mean response.
Consequently, the null distribution need not be centered at zero. We deem the
empirically obtained selectivity value significant if it falls outside of the central 95
percent interval of this distribution.

Measuring Fano factor. We examined the relationship between stimulus uncer-
tainty and Fano factor, a popular measure of response dispersion, defined as the
ratio of the spike-count variance to the mean. This statistic does not capture a
stable property of a neuron for a given level of stimulus uncertainty, as it depends
on stimulus drive and count window (Supplementary Fig. 1). To obtain a single
value of Fano factor for each stimulus family in the orientation experiment, we first
computed an estimate for each stimulus condition and then averaged these esti-
mates across all stimulus orientations within a given family (Fig. 3d). Likewise, in
the texture experiment, we averaged the condition-specific estimates across all
texture and noise stimuli, respectively (Fig. 4f). To obtain a single value of Fano
factor across conditions, some previous studies used a different computation which
takes into account the statistical uncertainty of the response variance estimates10.

Fitting the stochastic normalization model. The canonical divisive normalization
model describes the deterministic firing rate fi(S) of a neuron i in response to a
stimulus S as some function of the stimulus drive gi(S) divided by the sum of
stimulus-dependent drive to neighboring neurons ∑j gj(S) and a stimulus-
independent constant β, with transduction exponent p:

f iðSÞ ¼
giðSÞ

βþ
P

jgjðSÞ

 !p

: ð7Þ

Because neighboring neurons are stochastic, we modeled the aggregate stochasticity
of the normalization pool with stimulus-independent additive Gaussian noise ϵ )
N ð0; σ2N Þ and define the resulting stochastic firing rate:

μi ¼
giðSÞ

βþ
P

jgjðSÞ þ ϵ

 !p

: ð8Þ

If the magnitude of the noise ϵ is sufficiently small, we can use a Taylor expansion
to obtain the mean and standard deviation of the firing rate μi across samples of
normalization noise:

E½μi" ¼ f iðSÞ; ð9Þ

Std½μi" ¼
σN ' p

βþ
P

jgjðSÞ
f iðSÞ: ð10Þ

Equating these expressions to those obtained from the modulated Poisson model
(recall E[μi] = f(S), Std[μi] = f(S)σG) results in a new expression for gain variability:

σG ¼ Std½μi"
E½μi"

¼ σN ' p
βþ

P
jgjðSÞ

: ð11Þ

Although the noise term σN is stimulus-independent, divisive normalization causes
gain variability to depend on the stimulus through the denominator of this
expression.

We investigated the adequacy of this equation by fitting the stochastic
normalization model to the population-averaged gain variability. We opted to
constrain the model as much as possible. Rather than fitting the transduction
exponent p and the stimulus-independent normalization constant β to these data,
we used the population-averaged estimates of both parameters obtained by fitting
the neurons’ mean responses with the divisive normalization model from ref. 17
(p = 2.001, β = 0.64). We approximate the exponent with p = 2 to align our model
with canonical formulations of divisive normalization24. The stimulus-dependent

normalization ∑j gj(S) was computed by simulating responses of a fixed pool of
neurons with a diverse set of tuning properties, as explained in detail in ref. 17.

The final free parameter σN was estimated by minimizing the mean squared
error between predicted and observed σG (Fig. 5c, full line).

Analysis of gain dynamics. We sought to determine whether neural gain fluc-
tuations are better described as having fast or slow dynamics. For a slow mod-
ulatory process, the variance-to-mean relationship is independent of the counting
window; for a fast process, this relation changes in a predictable manner with
window size (see equations in Results). To leverage this insight, we counted the
same set of spikes with windows of different duration, and fit both a fast- and
a slow-dynamics model to the resulting dataset. The largest counting window
(1000 ms) contributes one observation per trial; the smallest window (62.5 ms)
contributes sixteen observations per trial. To determine the log likelihood of the
models for an entire dataset, we treat all observations as being statistically inde-
pendent. This is not strictly correct, as each spike is counted multiple times (exactly
once per window size). To assess the effectiveness of our model comparison pro-
cedure, we performed a recovery analysis. For each measured variance-to-mean
relation (one per neuron per stimulus family), we synthesized 1000 datasets
imposing slow gain dynamics (one random gain sample per second), and 1000
datasets imposing fast gain dynamics (one random gain sample every 62.5 ms). The
generating parameters were the empirically observed mean counts as measured
with a 62.5 ms window, and the gain variability estimate obtained under a 1000 ms
window. We then fit the slow- and fast-dynamics model to each synthetic dataset,
and compared their goodness-of-fit in exactly the same manner as we did for the
real data. When the ground truth was slow dynamics, the slow-dynamics model
was preferred in 99.5% of cases; when the ground truth was fast dynamics, the fast-
dynamics model was preferred in 80.8% of cases. We deem our method to be fairly
sensitive, although slightly biased in favor of slow dynamics. If slow and fast
dynamics were equally probable in the population, our method would identify the
slow-dynamics model as the winner in 59.4% of cases. In contrast, when applied to
real data, slow dynamics were favored in 89.10% of cases. To assess the significance
of this difference, we compared the empirically obtained log likelihood difference
with the expected log likelihood difference under a null model, created by com-
bining all 2000 synthetic datasets (and thus making slow and fast dynamics equally
probable), and found slow dynamics to be preferred in 85.5% of cases.

As an additional control, we also performed an analysis in which we only fit the
modulated Poisson model to the largest counting window conditions, and then
generated predictions for all other window sizes assuming either fast or slow
dynamics. For 88.85% of cases, the slow-dynamics model generated better
predictions than the fast-dynamics model (Supplementary Fig. 2).

Decoding stimulus features and uncertainty. Stimulus orientation, spread, and
contrast were jointly decoded on a trial-by-trial basis from simulated population
activity. We defined stimuli S in the orientation domain as mixtures consisting of
up to nine components that were spaced at 20∘ intervals and whose orientation-
dependent contrasts followed a circular Gaussian profile centered on a particular
orientation θS. Stimulus spread σS was varied between 1–55∘ and stimulus contrast
cS (i.e., the amplitude of the Gaussian) between 5% and 50%. Stimuli were pro-
cessed by a population of neurons whose orientation selectivity Wi was determined
by a raised cosine function:

WiðθÞ ¼ cos3ðθ ( θiÞ exp
9
2
cos2ðθ ( θiÞ

# $
; ð12Þ

where θi is the preferred orientation. This profile matches the selectivity of a spatial
Gaussian derivative filter with an aspect ratio of two and derivative order of three17.
Stimulus drive gi(S) was computed as the dot-product of the stimulus and filter
profiles, followed by an affine rescaling:

giðSÞ ¼ ηþ υ
X

θ

WiðθÞ ' SðθÞ; ð13Þ

where η captures the spontaneous discharge and υ the dynamic range (i.e., the
difference between the spontaneous discharge and the response elicited by the
preferred stimulus). We then applied the equations of the stochastic normalization
model to obtain a firing rate fi(S) and gain variability σG for each neuron (Eqs. 1
and 2). Populations consisted of 250 neurons, and each neuron’s orientation
preference and dynamic range were chosen randomly from a uniform and Gaus-
sian distribution, respectively. The spontaneous discharge η equalled 2 ips on
average (s.d.: 0.2 ips), and the dynamic range υ equalled 50 ips on average (s.d.: 7
ips). All neurons had the same uncertainty receptive field whose shape was
determined by parameters fit to neural data (σN = 0.35, p = 2, β = 0.64), resulting
in a single value σG for the gain variability of the entire population.

Assuming these neurons fire independently from one another, we modeled a
pattern of spike counts {Ki} from a window of length Δt using a negative binomial
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distribution15:

log pðfKigjSÞ ¼ log
Yn

i¼1

pðKijSÞ

¼
Xn

i¼1

log ΓðKi þ 1=σ2GÞ ( log ΓðKi þ 1Þ

( log Γð1=σ2GÞ þ Kilog ðσ2GλiÞ
( ðKi þ 1=σ2GÞlog ð1þ σ2GλiÞ;

ð14Þ

where the rate λi = fi(S)Δt and gain variability σG are given by the stochastic
normalization model (Eqs. 2 and 3). This allowed us to compute the most likely
stimulus given a collection of spike counts {Ki}:

Ŝ ¼ argmax
S

log pðfKigjSÞ: ð15Þ

In particular, given that in our case the stimulus was fully defined by its peak
orientation θS, its contrast cS and spread σS, we simultaneously decoded these
variables via maximum-likelihood estimation:

θ̂S; ĉS; σ̂S ¼ arg max
θS ;cS ;σS

log pðfKigjSðθS; cS; σSÞÞ: ð16Þ

We found this maximum-likelihood estimate via gradient ascent using fmincon in
MATLAB (using a multi-start procedure with random initialization) while
constraining the stimulus estimates to be within the following ranges (contrast: [0,
1], orientation: [0∘, 180∘], spread: [0∘, 70∘]). Having done so, we compute an estimate
of the gain variability by evaluating the uncertainty receptive field on the estimated
stimulus parameters. This is the decoded gain variability reported in Fig. 8.

To assess the quality of uncertainty and orientation decoding, we measured the
orientation decoding error on a trial-by-trial basis (Fig. 8a). Each simulation
included 100 unique contrast-dispersion stimuli at ten orientations, yielding a total
of 1000 trials. We sorted and binned the trials according to the estimated gain
variability σ̂G. Within each bin, we computed the variance of the orientation
estimation error across trials, and compared it to the average gain variability
estimate of that bin (Fig. 8b). The reported association between these two
quantities (Fig. 8c) is their Spearman correlation, averaged across 100 repeats of the
simulation.

To assess the effect of interneuronal gain correlations, we varied the amount of
gain correlation while keeping the total amount of gain variability constant.
Specifically, we created two gain variables Gs and Gp that were shared and private
respectively, both of which had unit mean and a variance equal to σ2G. Each neuron
was modulated by its own gain G = γGs + (1 − γ)Gp where γ ∈ [0, 1]. When γ = 0,
all gain variability is statistically independent across the population, when γ > 0,
interneuronal gain fluctuations are positively correlated. We chose
γ ∈ {0, 0.33, 0.67} to span a physiologically plausible range15,66. Finally, we wished
to estimate gain variability in an efficient, neurally plausible manner. For this we
make the additional assumption that our population of neurons is divided into
n = 5 sub-populations (or cortical columns) of m = 50 neurons who share
identical stimulus tuning λi. In this case, firing rates can be estimated by averaging
the spiking counts Kj

i within a sub-population:

λi * λ̂i ¼
1
m

Xm

j¼1

Kj
i ð17Þ

with the approximation becoming exact in the limit of a large sub-population size
m. Similarly, the variance within sub-populations provides an estimate of their true
variance, and thus the gain variability:

λi þ σ2Gλ
2
i ¼ σ2i * σ̂2i ¼

1
m( 1

Xm

j¼1

ðKj
i ( λ̂iÞ

2
: ð18Þ

If we further assume that gain variability is shared across sub-populations, we can
pool these estimators into a single estimate of gain variability for the entire
population:

σ2G * σ̂2G ¼
Pn

i¼1 σ̂
2
i ( λ̂i

Pn
i¼1 λ̂

2
i

: ð19Þ

This is the heuristic estimator shown in Fig. 9.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data and analysis code that support the findings of this study are available from the
corresponding author upon reasonable request.
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Supplementary Information
Representation of visual uncertainty through neural gain variability
Olivier J. Hénaff, Zoe M. Boundy-Singer, Kristof Meding, Corey M. Ziemba, Robbe L. T. Goris

Different measures of neural response dispersion can behave differently
In the main paper, we compared two measures of neural response dispersion: gain variability and Fano factor (defined as the
ratio of the spike count variance to the mean). We found the former to track stimulus uncertainty much better than the latter
(see Fig. 3d and 4f). Why might this be so? In our experiments, the more uncertain stimulus conditions are associated with
reduced responsiveness and increased gain variability. Under the modulated Poisson model, these effects act on the Fano factor
in opposite manners. Everything else being equal, a decrease in responsivity will reduce Fano factor, while an increase in gain
variability will increase Fano Factor (Supplementary Figure 1).
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ѫG = 0.25 Supplementary Figure 1 Fano factor and gain variability can behave

differently. Variance-to-mean relation under the modulated Poisson
model is shown for two levels of gain variability (blue and red line). The
black lines with unit slope each illustrate a constant value of Fano factor
(set to 1, 2, and 4, respectively). When increases in gain variability are
accompanied by a reduction in mean response, Fano factor can remain
constant, as illustrated by the black points. This explains why Fano factor
can be detached from stimulus uncertainty, even though gain variability
is strongly associated with stimulus uncertainty (Fig. 3d; Fig. 4f).

Alternative comparison of models with slow and fast dynamics
In the main paper, we compared models with slow and fast dynamics by jointly fitting spikes binned in five different counting
windows. While this analysis provided a clear result (see Fig. 6), its statistical soundness can be questioned because the same
data are included multiple times to identify the models’ parameters. As an alternative, we also performed an analysis in which
we compared models with slow and fast dynamics by only fitting spikes binned using the longest counting window (1,000 ms).
We then generated predictions for the spike count distributions in all other bin-sizes assuming either slow or fast dynamics (Sup-
plementary figure 2a). The slow-dynamics model generated better predictions than the fast dynamics model in 88.85% of cases
(Supplementary figure 2b). Thus, this alternative analysis supports the same conclusion as the analysis in the main text: gain
fluctuations are better described as arising from a process with slow rather than fast dynamics.
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Supplementary Figure 2 Comparison of models with slow and fast gain dynamics. (a) Variance-to-mean relation for one stimulus
family for the example V1 neuron from Fig. 6. Responses are shown for three different counting windows: 62.5 ms (black points),
250 ms (grey points), and 1,000 ms (blue points). We fit two models to the largest counting window data: one with fast gain
dynamics (left panel), and one with slow gain dynamics (right panel). (c) We measured goodness-of-fit for the hold-out data by
computing the log likelihood of the data at each window size for both models. Distribution of the difference in log likelihood under
both models for a population of V1 and V2 neurons is shown for the 500 ms (top) to the 62.5 ms (bottom) counting window.
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