
How does V1 population activity inform perceptual certainty?1

Zoe M. Boundy-Singer1, Corey M. Ziemba1, Olivier J. Hénaff2, Robbe L. T. Goris1⇤2

1 Center for Perceptual Systems, University of Texas at Austin, Austin, Texas, 78712, USA. 2 DeepMind, London, UK.3

*Correspondence: robbe.goris@utexas.edu.4

Summary|| Neural population activity in sensory cortex informs our perceptual interpretation of the environment.5

Oftentimes, this population activity will support multiple alternative interpretations. The larger the set of plausible6

alternatives, the more uncertain the selected perceptual interpretation. We test the hypothesis that the reliability of per-7

ceptual interpretations can be revealed through simple transformations of sensory population activity. We recorded V18

population activity in fixating macaques while presenting oriented stimuli under different levels of nuisance variability9

and signal strength. We developed a decoding procedure to infer from V1 activity the most likely stimulus orientation as10

well as the certainty of this estimate. Our analysis shows that response magnitude, response dispersion, and variability11

in response gain all offer useful proxies for orientation certainty. Of these three metrics, the last one has the strongest as-12

sociation with the decoder’s uncertainty estimates. These results clarify that the nature of neural population activity in13

sensory cortex provides downstream circuits with multiple options to assess the reliability of perceptual interpretations.14

Keywords|| neural coding, visual cortex, sensory uncertainty, population representation15

Introduction16

Perceptual systems infer properties of the environment from sensory measurements that can be corrupted by nuisance vari-17

ability1 and neural noise2. Consequently, sensory measurements are inherently ambiguous and perceptual inferences can be18

uncertain. This uncertainty limits the quality of perceptually-guided behavior. To mitigate this problem, uncertain observers19

collect additional sensory evidence3,4, combine signals across sensory modalities5,6, and leverage knowledge of statistical reg-20

ularities in the environment7,8. These behavioral phenomena all suggest that the brain can assess the uncertainty of individual21

perceptual inferences, as do explicit reports of confidence in perceptual decisions9,10. How it does so is unknown. The optimal22

computational strategy (‘exact inference’) relies on knowing how stimulus and context variables drive neural activity in sensory23

circuits, expressing this knowledge in a generative model, and then inverting this model for a given sensory measurement11–13.24

This operation yields a function that expresses the likelihood of every possible stimulus interpretation. The likelihood function25

can be used to derive the best perceptual estimate (i.e., the mode) and its uncertainty (i.e., the width). However, exact inference26

entails complex calculations that are intractable for many real-world perceptual tasks14.27

How does the brain estimate perceptual uncertainty? One appealing possibility is that it leverages certain aspects of neural28

activity as a direct proxy for uncertainty. For example, given that action potentials transmit information, the overall level29

of responsiveness of a sensory population may provide a reasonable estimate of the certainty of any inference based on that30

population response15,16. Likewise, given that response variability and inferential uncertainty are intimately related, spatio-31

temporal fluctuations in neural responsiveness may provide a useful indication of perceptual uncertainty17–21. And perhaps there32

are less intuitive aspects of sensory population activity that provide an even better indication of downstream uncertainty22–25.33

Here, we examined these questions in macaque primary visual cortex (V1). We studied the problem of perceptual orientation34

estimation in the presence of nuisance variation and signal strength variability. We developed a model based decoding procedure35

for deriving exact inference estimates of stimulus orientation and orientation uncertainty from neural population activity. We36

then compared this latter estimate with different aspects of neural activity related to coding fidelity to evaluate their suitability37

as "candidate representations of uncertainty".38

We found that the overall strength of the population response, the cross-neural dispersion of this response, and cross-neural39

variability in response gain each exhibit a modest to strong association with the decoder’s orientation uncertainty. Further40

analysis of the relative importance of these three variables revealed that gain variability is the main driver of this association.41

This was true both in the presence and absence of external stimulus variability. Neural networks trained to predict orientation42

uncertainty from the population response reached similar performance levels as gain variability, demonstrating that our hand-43

picked candidate representations are effective proxies for inferential uncertainty. Together, these findings illuminate how the44

nature of the neural code facilitates the assessment of perceptual uncertainty by circuits downstream of sensory cortex.45

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2023. ; https://doi.org/10.1101/2023.09.08.556926doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556926
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results46

Orientation coding in V1 loses precision under high nuisance variation and low signal strength47

Our approach to evaluate candidate representations of perceptual uncertainty relies on three elements. First, a rich stimulus48

set which elicits variable amounts of perceptual uncertainty about a stimulus feature of interest. Second, observation of the49

joint spiking activity of a population of sensory neurons selective for this feature. And third, a method to obtain ground truth50

estimates of perceptual uncertainty on a single trial basis. We reasoned that the primary visual cortex offers a fruitful test-bed51

for our approach. V1 neurons are selective for local image orientation26 and their activity is thought to inform perceptual52

orientation estimates27–29. V1 activity not only reflects stimulus orientation. It is also modulated by factors that impact per-53

ceptual uncertainty about stimulus orientation. These include reductions of signal strength by lowering stimulus contrast30,31
54

and increases of nuisance variation by widening orientation dispersion32,33. Building on these earlier findings, we constructed55

a stimulus set consisting of filtered 3-D luminance noise with filter settings varying in center direction of motion (16 levels),56

orientation dispersion (2 levels), and amplitude (2 levels, see Methods, Fig. 1A).57

We studied coding of visual uncertainty in V1 populations composed of diversely tuned units. We used linear multi-electrode58

arrays to record the joint spiking activity of 13 ensembles of V1 units from two fixating macaque monkeys. Ensembles ranged59

in size from 10 to 61 units. Stimuli were presented within a 3� wide circular window, centered on the population receptive60

field. We conducted these experiments in the near periphery (mean eccentricity = 2.9�), where receptive fields of V1 cells are61

comparatively small34. Stimuli thus overlapped with both the classical receptive field and its inhibitory surround35. Most units62

responded selectively to our stimulus set (Fig. 1B), and exhibited regular orientation tuning for the high contrast, narrowband63

stimuli (Fig. 1C). For each unit, we calculated the preferred direction of motion and the sharpness of its orientation tuning64

(see Methods). Inspection of the distribution of both statistics within each population revealed that orientation preference was65

typically approximately uniformly distributed (Rayleigh test for non uniformity was not significant for 10 out of 13 populations66

with ↵ = 0.05; Fig 1D, top), and that tuning sharpness varied considerably across units (Fig. 1D, bottom).67

A stimulus feature can be reliably estimated from neural population activity when that activity reliably varies with the feature.68

Whether or not this is the case depends on how the mean and variability of the neural response relate to the stimulus. Consider69

the effects of stimulus contrast and stimulus dispersion on the mean response of an example unit. Lowering contrast reduced70

the amplitude and, to a lesser degree, the selectivity of the response (Fig. 1E, dark vs light lines). This was true for most of our71

units (median amplitude reduction: 32.6%, P < 0.001, Wilcoxon signed rank test; median OSI reduction: 18.9%, P < 0.001).72

Increasing stimulus dispersion also reduced the example unit’s response amplitude. In addition, this manipulation substantially73

broadened the tuning function (Fig. 1E, red vs blue lines). Again, these effects were exhibited by most units (median amplitude74

reduction: 31.6%, P < 0.001; median OSI reduction: 64.2%, P < 0.001).75

Our stimulus manipulations also impacted cross-trial response variability. Neurons in visual cortex typically exhibit super-76

Poisson variability, meaning that spike count variance exceeds spike count mean (Fig. 1F, symbols). This behavior is well77

captured by a statistical model of neural activity in which spikes arise from a Poisson process and response gain fluctuates from78

trial to trial36,37 (the modulated Poisson model, Fig. 1F, lines). The larger the gain variability, �G, the larger the excess spike79

count variance. For each unit, we fit the modulated Poisson model separately per stimulus family (i.e., a specific combination80

of stimulus contrast and orientation dispersion). Lowering contrast and increasing dispersion both increased gain variability81

(median increase: 27.1%, P < 0.001 for contrast, and 12.8%, P < 0.001 for dispersion, Wilcoxon signed rank test), consistent82

with previous observations in anesthetized animals20.83

To quantify the collective impact of these effects on the population representation of stimulus orientation, we computed the84

population Fisher Information (I✓, see Methods). This statistic expresses how well stimulus orientation can be estimated from85

population activity by an optimal decoder and is inversely related to the uncertainty of this estimate38. Consider the Fisher86

Information profiles of an example population. Reducing stimulus contrast and increasing orientation dispersion both lowered87

I✓ in a systematic manner, as is evident from the vertical separation of the colored lines (Fig. 1G, left). These effects were88

present in all of our recordings (Fig. 1G, right), though the exact impact differed somewhat across populations. Trial-to-89

trial response fluctuations are often correlated among neurons39. These so-called ‘noise correlations’ can affect the coding90

capacity of neural populations40,41. However, we found no systematic effect of our stimulus manipulations on the average91

strength of pairwise response dependencies (P = 0.61 for contrast, Wilcoxon rank sum test and P = 0.10 for dispersion; Fig.92

S1A). Moreover, a shuffling analysis revealed that noise correlations had minimal impact on Fisher Information estimates93

(see Methods; Fig S1B-C). This result may in part be due to the relatively small sizes of our populations40. Nevertheless,94

we conclude that under these experimental conditions, our stimulus reliability manipulations substantially impact orientation95

coding in V1 because they alter the relation between stimulus orientation on the one hand, and response mean and response96

variance on the other hand.97

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2023. ; https://doi.org/10.1101/2023.09.08.556926doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556926
http://creativecommons.org/licenses/by-nc-nd/4.0/


The width of the likelihood function captures coding fidelity at the single trial level98

To evaluate candidate representations of uncertainty, we need to know which trials yielded a high quality representation of99

stimulus orientation and which did not. Population Fisher information cannot be used for this because its calculation takes into100

account response variation across trials. Instead, we developed a decoding method to infer stimulus features from population101

activity on a trial-by-trial basis15,25,42–46. Specifically, we built a stimulus-response model that describes how our stimulus set102

drives spiking activity of V1 neurons and then inverted this model to obtain an estimate of the likelihood of every possible103

stimulus orientation on the basis of a single trial population response. We described each unit’s responses with a previously104

proposed model of V1 function (the stochastic normalization model20,47, see Methods; Fig. S2). In this model, stimuli are pro-105

cessed in a narrowly tuned excitatory channel and a broadly tuned inhibitory channel and spikes arise from a modulated Poisson106

process20,32. As can be seen for an example unit, the model captures how both spike count mean and spike count variance de-107

pend on stimulus orientation, stimulus contrast, and stimulus dispersion (Fig. 2A). To evaluate the model’s goodness-of-fit,108

we calculated the association between predicted and observed response mean and variance (Fig. 2B). The association was109

generally high (median Pearson correlation across all units was 0.83 for response mean and 0.80 for response variance; Fig.110

2C). For each unit, the model predicts how probable a given response is for a given stimulus condition. Conversely, knowledge111

of this probabilistic relation allows inferring how likely a given stimulus is in light of an observed response48. Computing this112

value for all possible stimuli yields a likelihood function (see Methods). Intuitively, this function summarizes which stimulus113

interpretations can be ruled out and which cannot. The likelihood function provides a framework to study neural coding that114

naturally generalizes to the population level. If neural responses are statistically independent, the joint likelihood function of115

a population of neurons is simply given by the product of the likelihood functions of all units. Given that noise correlations116

were generally small and did not significantly impact orientation coding capacity in our data (Fig. S1), we opted to use this117

formulation20 (see Methods).118

Consider the likelihood function for two example trials. This function was obtained by marginalizing the full likelihood function119

over the dimensions of stimulus contrast and stimulus dispersion (see Methods). Population activity differed substantially120

across these two trials (Fig. 1B). Accordingly, the corresponding likelihood functions also differed in central tendency and121

shape (Fig. 2D). For each trial, we used the maximum of the marginalized likelihood function as a point estimate of stimulus122

orientation. Overall, this estimate correlated well with the veridical stimulus orientation (circular correlation computed across123

all stimulus conditions, r = 0.76 on average and ranged from 0.96 for high contrast low dispersion stimuli to 0.43 for low124

contrast high dispersion stimuli, Fig. S3A-B). However, it did not track stimulus orientation perfectly. On some trials, the125

orientation estimation error could be substantial, especially when stimulus dispersion was high (Fig. 2E, left). This pattern126

reflected an underlying structure in the distribution of estimation error. Specifically, as expected from a well-calibrated model,127

the spread of the estimation error approximately matched the width of the likelihood function (Fig. 2E, right). Consequently,128

the average width of the likelihood function was strongly associated with the average size of the estimation error (Spearman’s129

rank correlation coefficient: r = 0.91, p < 0.001; Fig. 2F) and with population Fisher Information (Spearman’s rank correlation130

coefficient: r = -0.81, p < 0.001; Fig. 2G). Together, these results establish the width of the likelihood function calculated under131

the stochastic normalization model as a principled metric of coding quality for our data set. In the following analyses, we will132

use it as the "ground truth" estimate of stimulus uncertainty on a trial-by-trial basis.133

Some aspects of population activity predict the decoder’s stimulus uncertainty134

Might certain transformations of neural activity in sensory cortex provide a direct proxy for perceptual uncertainty? Moti-135

vated by previous theoretical proposals15,16,19,20,49, we evaluate three different aspects of V1 population activity as candidate136

representations of coding quality: (1) the overall strength of the population response (‘response magnitude’), (2) cross-neural137

variability in responsiveness (‘response dispersion’ as absolute measure, and ‘relative dispersion’ as normalized measure), and138

(3) variability in excitability (‘gain variability’). For each metric, we consider two variants. One that can be estimated directly139

from the observed population response (‘direct estimates’), and one that takes into account knowledge of the units’ stimulus-140

response relation (‘inferred estimates’, Fig. 3A). We selected these metrics because they each capture an aspect of neural141

activity that is thought to either influence or reflect coding fidelity. Specifically, given that cortical responses appear subject142

to Poisson-like noise30,36,50, response magnitude is a proxy for the signal-to-noise ratio of the neural response. Cross-neural143

response variability, on the other hand, in part reflects the selectivity of the stimulus drive. It will only be high for trials in which144

a subset of neurons is highly active – an activation pattern that allows for unambiguous stimulus inference48 and that satisfies145

the goal of coding efficiency49. Finally, it has been shown previously that cross-trial gain variability in V1 tracks orientation146

uncertainty within single units20 (also see Fig. 1F, inset). This relationship may generalize to cross-neural gain variability147

within populations.148

We reasoned that proxies for perceptual uncertainty ought to meet three requirements to be useful: (1) distinguish reliable149

from unreliable stimulus conditions; (2) predict perceptual uncertainty on a trial-by-trial basis; and (3) predict variability in150
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perceptual uncertainty solely due to internal sources. Motivated by this logic, we first examined the relationship between the151

selected metrics and Fisher Information. To this end, we computed the average value of each metric for each stimulus family,152

just like we did previously for the width of the likelihood function (Fig. 2F,G). Consider the direct estimates. Response153

magnitude, response dispersion, and gain variability each exhibited a modest association with Fisher information (r = 0.52,154

0.51, and 0.54, with 95% confidence intervals ranging from 0.31-0.69, 0.30-0.69, and 0.35-0.70; Fig. 3B, left), but fell short155

of the predictive power of the width of the likelihood function (r = 0.80, 95% confidence interval 0.68-0.88). Note that we156

consider two measurements statistically different at a P-value of 0.05 when the observed value for one does not fall within157

the other’s 95% confidence interval. By comparison, relative dispersion had a substantially weaker correlated with Fisher158

information (r = 0.26, 95% confidence interval 0.02-0.47; Fig. 3B, left). This pattern may in part reflect the limited size of our159

recorded populations. For each of these metrics, simulated direct estimates better approximate the ground truth as population160

size grows (Fig 3A). However, the speed of improvement differs across metrics, implying that some will be more hampered by161

our recording conditions than others (Fig 3A). We therefore complemented this analysis with one in which we attempted to get162

better estimates of each metric by inferring them from the observed population activity whilst taking into account knowledge163

of each unit’s tuning properties (see Methods). In simulation, this procedure improves estimation accuracy for each metric164

(Fig 3A, full vs dotted lines). Inferred response magnitude and gain variability each exhibited a modest association with Fisher165

information (r = 0.55 and 0.63, with 95% confidence intervals 0.35-0.71 and 0.45-0.77) while response dispersion and relative166

dispersion tended to exhibited a weaker association (r = 0.36 and 0.37, with 95% confidence intervals 0.12-0.57 and 0.13-0.56).167

We next asked how well these metrics predict perceptual uncertainty on a trial-by-trial basis. For each population, we quantified168

this association by computing the rank correlation between the metric under consideration and the width of the likelihood169

function. We summarized results across populations by computing the mean rank correlation. This yielded values that were170

modest to high for inferred response magnitude (r = 0.68, 95% confidence interval of the mean 0.54-0.83), response dispersion171

(r = 0.54, 0.36-0.72), and gain variability (r = 0.81, 0.74-0.84), but not for relative dispersion (r = 0.46, 0.27-0.64; Fig. 3C, left).172

Perceptual uncertainty in part arises from internal sources2,14. To isolate variations in this factor, we conducted a variant of our173

experiment in eight recordings in which a single, randomly chosen stimulus was over-represented and shown several hundred174

times over the course of the experiment. As expected, this set of identical trials elicited considerable variability in the width175

of the likelihood function (standard deviation = 19.75 deg on average, 38.9 % smaller than the standard deviation across all176

other trials in these experiments; see Methods). This variability must be largely due to internal sources. We found that it was177

predicted similarly well by all four inferred candidate metrics (mean rank correlation r = 0.63, 95% confidence interval 0.49-178

0.77 for response magnitude, 0.54, 0.30-0.77 for response dispersion, 0.69, 0.58-0.79 for gain variability, and 0.55, 0.25-0.82179

for relative dispersion; Fig. 3C, right).180

In summary, our analysis suggests that response magnitude, response dispersion, and gain variability all provide a useful proxy181

for the fidelity of orientation coding in V1. This was true both in the presence and absence of external sources of stimulus182

variability. By the same standard, the combination of two candidate metrics in the form of relative dispersion did not result in a183

more predictive metric and thus not does not appear to be a useful proxy for stimulus uncertainty. These results do not appear184

to depend on the details of the decoding method. Specifically, decoding V1 activity with a conceptually simpler method that185

treats spikes as if they arise from a pure Poisson process yielded qualitatively similar results, though the association between186

the candidate metrics and likelihood width were overall weaker (Fig. S4).187

Gain variability directly predicts stimulus uncertainty, the other metrics do not188

We have identified three candidate metrics that exhibit modest to strong correlations with the width of the likelihood function.189

This implies that they may also correlate strongly with each other. Indeed, the average rank correlation between inferred re-190

sponse magnitude and response dispersion was 0.91. For response magnitude and gain variability it was 0.86 and for response191

dispersion and gain variability it was 0.68. We wondered how controlling for this confound would impact the metrics’ associ-192

ation with stimulus uncertainty. To this end, we rank ordered all trials from a given recording as a function of the metric we193

sought to control for. We then selected the first 50 trials. By design, these trials will not vary much along the sorting metric (i.e.,194

the ‘frozen’ variable), but they may vary along the two other ‘non-frozen’ metrics (Fig. 4A, left). The correlation between the195

non-frozen metrics and the width of the likelihood function provides a measure of the strength of the association in the absence196

of a confounding variable (Fig. 4A, right). We then repeated this analysis for the next sets of 50 trials and thus obtained a197

distribution of this measure (see Methods). Controlling for response magnitude had a modest impact on the predictive value of198

gain variability (mean rank correlation: r = 0.53, for experiment 1, and 0.32, for experiment 2, Fig. 4B,C). Conversely, freezing199

gain variability all but nullified the association between response magnitude and likelihood width. This was true of experiment200

1 (r = 0.04, difference with gain variability: P < 0.001, Wilcoxon Rank Sum Test; Fig. 4B, left) and experiment 2 (r = 0.11, dif-201

ference with gain variability: P < 0.001; Fig. 4C, left). We found a similar asymmetric pattern for gain variability and response202

dispersion. Freezing response dispersion did little to the predictive power of gain variability (r = 0.63 for Experiment 1, and203
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0.40 for experiment 2, Fig. 4B,C), but freezing gain variability removed most of the association between response dispersion204

and likelihood width (r = 0.04 for Experiment 1, difference with gain variability: P < 0.001; r = 0.10 for experiment 2, P <205

0.001; Fig. 4B,C middle). This data pattern suggests that out of these three candidate metrics, gain-variability has the most206

direct association with stimulus uncertainty. A complementary analysis that sought to examine how each candidate metric’s207

correlation with likelihood width depended on the inter-metric correlation further corroborated this conclusion (see Fig. S5).208

Gain variability rivals performance of artificial neural networks209

Our choice of candidate metrics was motivated by previous theoretical proposals15–17,19,20,49. It is of course possible that there210

exists a hitherto unsuspected transformation of population activity that provides an even better indication of the decoder’s211

uncertainty. To complement our analysis with a more agnostic approach, we trained a set of artificial neural networks (ANNs)212

to predict the width of the likelihood function from the population response. ANNs differed in architecture and training regime.213

To identify the subset of ANNs most relevant to our purposes, we conducted a two-round analysis. In the first round, we214

considered a diverse set of ANNs which differed in their architecture (specifically, the number of hidden layers and hidden215

units) and training regime (specifically, the dropout rate and weight decay, see Methods). For each population, we selected216

the combination of network architecture and training regime that yielded maximal predictive accuracy on held out data (see217

Methods). We found that the best-performing combinations differed across the 13 populations. In the second round, we218

therefore again considered a set of ANNs, but this time the variation in network architecture and training regime was limited to219

the cases that had at least once resulted in a best performance in round 1. We report the average performance across networks220

as figure of merit. As we did previously for the hand-picked metrics, we first computed the correlation between the average221

predicted uncertainty for each stimulus family and population Fisher Information. This association rivaled the best handpicked222

metric, inferred gain variability (r = 0.61 vs 0.63, with 95% confidence intervals ranging from 0.59-0.62 and 0.45-0.77). We next223

examined how well the ANNs predicted likelihood width on a trial-by-trial basis. For experiment 1, we found that likelihood224

width was on average not significantly better predicted by the family of ANNs than by inferred gain variability (mean r =225

0.79 with 95% confidence intervals 0.75-0.83 for ANN predicted likelihood width, mean r = 0.81, 0.69-0.90 for inferred gain226

variability; Fig. 5B, left). For experiment 2, we found that likelihood width was somewhat better predicted by ANNs than by227

inferred gain variability (mean r = 0.77 with 95% confidence intervals 0.71-0.83 for ANN predicted likelihood width, mean r =228

0.69, 0.58-0.81 for inferred gain variability; Fig. 5B, right). We conclude that gain variability captures much of the variance of229

perceptual uncertainty that can be captured by a simple transformation of sensory population activity.230

Discussion231

Uncertainty is intrinsic to perception. Inevitably, some perceptual interpretations of the environment are more uncertain than232

others. A prominent hypothesis holds that the same sensory neurons that inform perceptual interpretations represent the uncer-233

tainty of these interpretations15–22,25,45. The nature of this representation is debated. A major challenge in studying this is that234

perceptual uncertainty is a property of an observer’s belief about the world, not a property of the world itself51. Here, we sought235

to overcome this by manipulating stimulus reliability in two distinct ways and by using a model-based procedure to decode V1236

spiking activity as a stand-in for what downstream areas ought to believe about stimulus orientation. We found that response237

magnitude, response dispersion, and variability in response gain all offer useful proxies for the certainty of stimulus orientation238

estimates. This was also true when fluctuations in uncertainty were not due to external factors but instead arose from internal239

sources. Of the metrics we considered, gain variability exhibited the most direct association with stimulus uncertainty.240

Our findings offer empirical support for the central tenets of two different theoretical frameworks for the representation of241

uncertainty in sensory cortex: probabilistic population codes (PPC) and the sampling hypothesis. The PPC framework is242

built on the idea that the nature of the neural code should enable implementing statistical inference with simple mathematical243

operations in a feedforward manner16,22,52. The modest to strong association of three simple transformations of population244

activity with an optimal decoder’s uncertainty estimates validates this notion for the primary visual cortex. The core idea of245

sampling models, on the other hand, is that an aspect of response variability is used to represent uncertainty17–19,21. The finding246

that gain variability is the purest predictor of stimulus uncertainty further corroborates this hypothesis for the primary visual247

cortex19–21. Interestingly, recent theoretical work has shown that some coding regimes are consistent with both the PPC and248

sampling framework13. It is possible that the primary visual cortex operates in exactly this mode13.249

From a statistical standpoint, the three metrics we deemed useful proxies for stimulus uncertainty capture very different aspects250

of neural population activity: the average of the neural response, the dispersion of these responses, and the variability of a251

latent modulator in a doubly stochastic process. Empirically, we found these metrics to be highly correlated with each other.252

Why might this be so? We think that response average and response dispersion are closely related because spike counts in253

visual cortex tend to be exponentially distributed53. In principle, this distribution allows maximal information transmission254
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per spike54–56. Under the exponential distribution, response standard deviation is equal to the response mean, providing an255

explanation for the strong association between both statistics in our data. We further suggest that response average and gain256

variability are closely related because of the mechanistic origins of gain variability. Specifically, we speculate that gain vari-257

ability in large part arises from stimulus-independent noise in a divisive normalization signal. This normalization signal is258

thought to reflect aggregated nearby neural activity47,57. As shown previously, noisy normalization naturally results in gain259

variability being inversely proportional to the normalization signal20,58. It follows that a higher mean response, leading to a260

stronger normalization signal, will generally coincide with a lower level of gain variability. If these interpretations are correct,261

then these strong associations might not just be specific to this V1 experiment but reflect a general property of visual cortex.262

Regardless of its source, the strong association between the different statistics we studied implies that downstream circuits have263

multiple options to assess the reliability of the sensory messages conveyed by neural populations in visual cortex. Perhaps a264

simple transformation is favored in cases where an approximate uncertainty estimate suffices, and more complex transforma-265

tions are used when achieving a goal critically depends on the quality of the perceptual certainty estimate. More generally,266

we expect that the quality of perceptual certainty estimates will improve with experience, as is the case for simple perceptual267

decisions59. Investigating these questions requires measuring sensory population activity from an animal generating a behavior268

that directly reflects their perceptual certainty on a trial-by-trial basis25,60,61.269

The metrics we considered as candidate representations of uncertainty can be estimated directly from neural population activity270

without knowledge of the tuning properties of the neurons or of the selected stimulus interpretation. However, for these271

estimates to be reliable, relatively large populations are required. We therefore resorted to an estimation technique that leveraged272

knowledge of stimulus response relations. While this approach is principled, verifying whether these results hold for direct273

estimation when the recorded population size is substantially larger is an important goal for future work.274
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METHODS413

Physiology414

All electrophysiological recordings were made from two awake fixating adult male rhesus macaque monkeys (Maccaca mulatta,415

both 7 years old at the time of recording). Subjects were implanted with a titanium chamber62 which enabled access to V1.416

All procedures were approved by the University of Texas Institutional Animal Care and Use Committee and conformed to417

National Institutes of Health standards. Extracellular recordings from neurons were made with one or two 32-channel S probes418

(Plexon), advanced mechanically into the brain with Thomas recording microdrives. Spikes were sorted with the offline spike419

sorting algorithm Kilosort263, followed by manual curation with the ‘phy’ user interface (https://github.com/kwikteam/phy).420

An example snippet of neural activity is shown in Fig. 1B.421

Apparatus422

Headfixed subjects viewed visual stimuli presented on a gamma-corrected 22-inch CRT monitor (Sony Trinitron, model GDM-423

FW900) placed at a distance of 60 cm. The monitor had a spatial resolution of 1280 by 1024 pixels and a refresh rate of 75 Hz.424

Stimuli were presented using PLDAPS software64 (https://github.com/HukLab/PLDAPS).425

Stimuli426

Stimuli consisted of band-pass filtered 3-D luminance noise. The filter was organized around a tilted plane in the frequency427

domain which specified a particular direction and speed of image motion (i.e., it was velocity-separable). All stimuli had a428

central spatial frequency of 2.5 cycles/deg with a bandwidth of 0.5 octaves and a central temporal frequency of 2.5 deg/sec429

with a bandwidth of 1 octave. Orientation bandwidth was either 3� or 90�, corresponding to the "low" and "high" level of430

dispersion. Stimulus contrast was computed by normalizing the summed orientation amplitude spectrum of each stimulus431

frame with the summed amplitude spectrum of a reference grating with matching spatial frequency. We equated contrast432

across orientation bandwidths by rescaling the filter output appropriately. The stimulus set was composed of four stimulus433

families (two orientation dispersion levels ⇥ two contrast levels), which each contained 16 differently oriented stimuli, evenly434

spaced between 0
� and 337.5�. For each stimulus condition, we generated five unique stimulus versions by using a different435

noise seed. Stimuli were presented within a vignette with a diameter of 3�, centered on the estimated average receptive field436

location, determined through a hand-mapping procedure. Stimuli were presented in random order for 1,000 ms each. Trials437

were excluded from further analysis if fixation was not maintained within a radius of 0.8 degrees from the fixation point for the438

duration of the stimulus presentation. The number of repeats per condition varied from session to session. In experiment 1 the439

average number of repeats per stimulus condition was 28.3 ± 5.6. In experiment 2 one stimulus was randomly selected to be440

over-represented. In these recordings the average number of repeats for non-selected stimuli and the single randomly selected441

stimulus was 16.9 ± 2.1 and 1089 ± 98.9 respectively.442

Data Analysis: single units and unit pairs443

We first studied the units’ orientation tuning in response to the high-contrast low-dispersion stimuli (examples shown in Fig.
1C). For each unit, we chose a response latency by maximizing the stimulus-associated response variance65, and counted
spikes within a 1,000 ms window following response onset. We visually inspected tuning curves and excluded untuned units
from further analysis (27 % of units). For each unit, we estimated the preferred stimulus orientation by taking the mode of a
circular Gaussian function fit to the neural responses. We estimated each unit’s orientation selectivity (OSI) using the following
equation66:

OSI =
|
P

j Rjei2✓j |P
j |Rj |

(1)

Where Rj is the mean firing rate and ✓j the orientation for the jth stimulus. The OSI values shown in Fig. 1D were directly444

calculated from the observed responses. We next studied the impact of our stimulus manipulations on the units’ orientation445

tuning. For this analysis, we fit four circular Gaussian functions (one per stimulus family) to the responses of each unit.446

The Gaussian quartet shared the same mode across stimulus families, but could vary in their amplitude and bandwidth. The447

changes in response amplitude and selectivity reported in the results section were calculated from the fitted functions. Changes448

in gain variability with stimulus manipulations were computed by using gain variability estimates from fitting the modulated449

Poisson model36 per unit and stimulus family. Finally, we asked how our stimulus manipulations impacted statistical response450

dependencies among pairs of neurons. For each pair of simultaneously recorded neurons, we estimated their ‘noise correlation’451
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by computing the Pearson correlation between their responses after removing the effects of stimulus condition on response452

mean and standard deviation.453

Data Analysis: population Fisher Information454

For each recording, we computed population Fisher Information (FI) per stimulus family using the method proposed in ref. 67
455

(example shown in Fig. 1G). This method requires that the number of repeated trials, T , exceeds the number of units, N , by456

about a factor of 2: T > (N + 2)/2. For some of our populations, this requirement is not met. To circumvent this violation,457

we combined stimulus conditions whose orientation differed by 180
� since these only differed in their drift direction. For each458

population, we summarized the FI per stimulus family by computing the median across stimulus orientations. Finally, to assess459

the impact of noise correlations, we compared FI with shuffled FI, calculated using the method proposed by67.460

Stimulus encoding model461

We fit responses of individual V1 units with the ’Stochastic Normalization Model’, a model inspired by the original work of462

Hubel and Wiesel26 and composed of elements introduced by many later studies20,32,47,58. The model consists of a canonical463

set of linear-nonlinear operations and describes how band-pass filtered noise stimuli are transformed into the firing rate of a464

V1 cell. Stimuli are first processed by a linear filter whose output is half wave rectified. Following earlier modeling work465

that involved similar stimuli32, the spatial profile of the linear filter is given by a derivative of a 2D Gaussian function. At the466

preferred spatial frequency, the orientation selectivity of this filter depends on the aspect ratio of the Gaussian, ↵, the order of467

the derivative, b, and the directional selectivity, d:468

r✓(✓; ✓o,↵, b, d) /

1 +

d

2
(sgn(cos(✓ � ✓0))� 1)

�
·

cos(✓ � ✓o) · exp(�

1

2
(1� ↵2

) cos
2
(✓ � ✓o)

��b
, (2)

where ✓ is stimulus orientation, ✓o is the filter’s preferred orientation and parameter d 2 [0, 1] determines direction selectivity.469

The function sgn(·) computes the sign of the argument. Because spatial frequency was not systematically varied in our stimulus470

set, it is not possible to uniquely determine both ↵ and b from the neural responses we observed32. As such, we set the derivative471

order to 2 unless the best fitting aspect ratio reached an upper limit of 5 – more extreme values correspond to spatial receptive472

fields that are atypically elongated for V132. The filter’s stimulus response, f(S), was computed as the dot-product of the filter473

and stimulus profile in the orientation domain:474

f(S) =
X

✓

r✓(✓) · S(✓). (3)

The amplitude and width of the stimulus profile directly reflect the stimulus’ contrast and dispersion, respectively. In the second475

stage of the model, the filter’s stimulus response is converted into a deterministic firing rate, µ(S), by subjecting the filter output476

to divisive normalization and passing the resulting signal through a power-law nonlinearity. This step also involves the inclusion477

of two sources of spontaneous discharge (one simply adds to the stimulus drive, the other is suppressed by stimuli that fail to478

excite the neuron) and a scaling operation:479

µ(S) = e1 + �

✓
e2 + f(S)

� +
P

j fj(S)

◆q

, (4)

where e1 and e2 control the spontaneous discharge, � the response amplitude, q the transduction nonlinearity, while stimulus480

independent constant, �, and the aggregated stimulus-drive of a pool of neighboring neurons,
P

j fj(S), provide the normal-481

ization signal.482

Neural responses vary across repeated stimulus presentations. To capture this aspect of the data, the model describes spikes as483

arising from a doubly stochastic process – specifically, a Poisson process subject to "gain modulations" originating from noisy484

normalization signals with standard deviation �✏
20,36. Under these assumptions, spike count variance, �2

N , is given by:485

�2
N = µ(S)�t+ �2

G(µ(S)�t)2, (5)

where �t is the size of the counting window and �G the standard deviation of the response gain, given by:486
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�G =
�✏ · q

� +
P

j fj(S)
. (6)

This model has 11 free parameters in total: four filter parameters (orientation preference ✓o, spatial aspect ratio ↵, derivative487

order b, and directional selectivity d), four parameters controlling response range and amplitude (constant �, scalar �, and488

maintained discharge e1 and e2), one parameter for the nonlinearity (exponent q), one parameter for the normalization noise489

(�✏), and one final parameter that controlled the degree to which the normalization signal depended on stimulus dispersion. We490

computed the model prediction for every trial and used a Bayesian optimization algorithm to find the best fitting parameters68.491

An example model fit is shown in Fig. 2A. To assess the goodness-of-fit, we computed the Pearson correlation between492

predicted and observed response mean and variance across all stimulus conditions (Fig. 2B). Units were excluded from further493

analysis if the Pearson correlation fell below 0.5 for response mean or below 0.2 for response variance. 352 out of 378 candidate494

units (93.1%) met this threshold.495

Decoding V1 population activity496

We leveraged the stimulus encoding model to decode V1 population activity on a trial-by-trial basis, building on the method
proposed in ref. 20. Specifically, assuming that the recorded neurons fire independently from one another, we modeled a pattern
of spike counts {Ki} realized during a window of length �t using a negative binomial distribution36:

log p({Ki}|S) = log

nY

i=1

p(Ki|S)

=

nX

i=1

log�(Ki + 1/�2
G,i)� log�(Ki + 1)

� log�(1/�2
G,i) +Ki log(�

2
G,i�i)

� (Ki + 1/�2
G,i) log(1 + �2

G,i�i) (7)

where the rate �i = µi(S)�t and gain variability �G,i are given by the stochastic normalization model (Eq. 4 & 6).497

In our experiment, the stimulus was fully defined by three parameters: its peak orientation ✓S , its spatial contrast cS and its498

orientation dispersion �S . To obtain the orientation likelihood function for a given trial, we first calculated the likelihood of each499

possible parameter combination in a finely sampled 3D grid (orientation: [0:.5:360�], contrast: [0.07:.05:1.4], and dispersion:500

[1:3.4:99�]). We then marginalized across the contrast and dispersion dimension, yielding the orientation likelihood function501

(examples shown in Fig. 2D). This function typically appeared Gaussian in shape (the Pearson correlation coefficient between502

the likelihood function and best-fitting Gaussian was on average r = 0.985). We therefore used the peak of the best-fitting503

Gaussian as the point-estimate of stimulus orientation. The width of the Gaussian defines the uncertainty of this estimate.504

Alternative ways to quantify both statistics which did not involve fitting a Gaussian function yielded highly similar values.505

Candidate metrics of uncertainty506

We evaluated different aspects of V1 population activity as proxies for the decoder’s orientation uncertainty. Specifically,507

we considered response magnitude, RM (which indicates certainty, the inverse of uncertainty), response dispersion, RD, and508

cross-neural gain variability, RG, computed as:509

RM =
1

M

MX

i=1

ri, (8)

RD =

sP
(ri �RM )

2

M
,and (9)

RG =
�✏ · q

� + (sn ·RM )
, (10)

where M is population size, �✏, q, and � are the mean values of the corresponding parameter estimates across all units (Eq.510

4 and 6), and sn is a fixed scalar parameter used to relate the observed response magnitude to the unobserved stimulus-driven511

component of the normalization signal (its value was estimated through simulation of the stochastic normalization model).512
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These metrics are intended to reflect properties of the sensory population activity that informs perceptual interpretations. Due513

to the limited size of our recorded populations, estimated values will typically deviate from the ground truth. We therefore also514

considered ’inferred estimates’ obtained by leveraging knowledge of each unit’s tuning properties. Specifically, for each trial,515

we estimated the most likely stimulus orientation, contrast, and dispersion under our encoding model:516

✓̂S , ĉS , �̂S = arg max
✓S ,cS ,�S

log p({Ki}|S(✓S , cS ,�S)). (11)

We found this maximum likelihood stimulus estimate via gradient descent using a Bayesian optimization algorithm68. We then517

used the encoding model to compute the expected response magnitude, response dispersion, and gain variability for this specific518

stimulus. The first and last estimate were obtained by computing the cross-unit average of Eqs. 4 and 6, while the expected519

standard deviation of the population response is given by:520

�N =

vuut
MX

i=1

1

M
(�2

G,iµ
2
i + µi + µ2

i )� µ2, (12)

where �G,i and µi are the expected gain-variability and response average of neuron i and µ is the expected magnitude of the521

population response.522

We examined our ability to recover each of the direct and inferred metrics from populations of various sizes simulated from523

the stochastic normalization model. To simulate an idealized population, for most parameters we used the median value from524

the model fits to our recorded units. We constrained ✓o to evenly tile the orientation domain and we randomly drew � for each525

simulated unit from an exponential distribution53. We simulated responses for our experiment 1 with 2 levels of contrast, 2526

levels of orientation dispersion, 16 orientations, and 35 repeated trials per stimulus condition. Each direct and inferred metric527

was computed from these population responses as in our experimental data and then compared to the ground truth values from528

the simulations (results summarized in Fig. 3A).529

Estimating partial correlations530

We developed a method to estimate the association between each candidate metric and orientation uncertainty while controlling531

for one other candidate metric (i.e., a statistic known as a ’partial correlation’). First, we Z-scored each metric and then rank-532

ordered the trials as a function of the metric we sought to control for. We considered non-overlapping bins of 50 consecutive533

trials and computed the variance of the "frozen" metric. If this value did not exceed a threshold level of �2 = 0.005, we534

proceeded to calculate the Spearman correlation between the "test" metric and the likelihood width for that set of trials. This535

analysis yielded a distribution of partial correlation values, shown in Fig. 4. We computed the average of each distribution on536

the Fisher Z-transformed values, and then used the inverse transformation to map this back onto a scale from [–1, 1] (triangles537

in Fig. 4B,C).538

Artificial Neural network539

We trained a family of feed-forward multi-layer perceptron neural networks on trial-by-trial spike count vectors to predict trial-540

by-trial ground truth likelihood width estimates. A unit’s spike count was included only if a unit was present for the entire541

duration of the experiment. On average 78% percent of units’ spike counts were used. We implemented networks with the542

TensorFlow framework with the AdamW optimiser with an objective to minimize the mean squared error between ground truth543

and network-predicted likelihood. Training proceeded in two phases.544

Phase 1: For each dataset, we trained 360 unique models which varied in the number of hidden layers (1, 2 or 3), number of545

hidden units per layer (10, 20, 30, 40, or 50), dropout rate between layers (0.05, 0.1, 0.15, or 0.2), weight decay (0.0, 0.001, or546

0.001), and the learning rate ( 0.001 or 0.0001). For each configuration of hyper-parameters we trained five networks on 80%547

of trials (training/validation set) and obtained a cross-validated prediction on the held out 20% of trials, rotating trials between548

training and held out set such that each trial had a cross-validated prediction. With this grid search we determined the set of549

hyper-parameters which minimized each dataset’s held-out loss.550

Phase 2: Optimal-hyper parameters in phase 1 differed across datasets. We used this range of optimal hyper-parameters to train551

96 networks on each dataset (each one using a different hyper-parameter configuration; hidden layers: 2 or 3; hidden units: 20,552

30, 40, or 50; dropout rate: 0.05, 0.1, 0.15, or 0.2; weight decay: 0.0, 0.001, or 0.001; and learning rate: 0.001 ) and computed553

their held-out loss as before. These held-out losses represent an ensemble-based estimate69 of the MLP model-class’s predictive554

accuracy, which we report in our results.555
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Figure 1 Orientation coding in V1 under different levels of nuisance variation and signal strength (a) We created four stimulus
families, each defined by the amount of orientation dispersion and contrast energy. Each family consisted of sixteen stimuli
with orientations evenly spaced from 0� to 337.5�. The example stimuli share the same orientation, but differ along the two
other dimensions. (b) Raster plot illustrating snippets of neural activity recorded during two different trials from population 1. An
example frame from each trial’s dynamic stimulus is shown on top. (c) Mean response to low dispersion, high contrast stimuli are
plotted as a function of stimulus orientation for all units from population 1 (a single example is highlighted in red). (d) Distribution
of preferred orientation (top) and orientation selectivity (bottom) for population 1. (e) Mean response as a function stimulus
orientation for an example unit. Different colors indicate different stimulus families. (f) The example unit’s variance-to-mean
relationship for two stimulus families (each data point corresponds to a different stimulus orientation). The solid line illustrates
the fit of the modulated Poisson model. Inset: gain-variability, �G, as estimated by the modulated Poisson model for each
stimulus family for this example unit. (g) Population Fisher information plotted against stimulus orientation for population 1, split
by stimulus family (left). Population Fisher information plotted against stimulus orientation averaged across all 13 populations
(right).
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Figure 2 Quantifying orientation uncertainty at the single trial level (a) Left, mean response of an example unit as a function
of orientation for all four stimulus families. Right, response variance plotted as a function of response mean for two stimulus
families (one data point per orientation). Solid lines indicate the fit of the stochastic normalization model. (b) Observed vs
predicted response mean (left) and response variance (right) for the example unit. (c) Distribution of the association between
predicted and observed response mean (left) and response variance (right) across all units. Black triangles indicates median
value across all units. Green line indicates the inclusion criterion. Units were included if the association between predicted and
observed mean and variance exceeded both criteria. Excluded units are indicated with green circles. The red circle indicates the
example unit illustrated in panel a,b. (d) Likelihood functions (solid lines) for two example trials (blue, low-contrast high-dispersion
stimulus; red, high-contrast low-dispersion stimulus). Dashed line indicates the stimulus orientation. The black circle indicates the
maximum likelihood orientation estimate. (e) Left, estimation error split by stimulus family for one example population. Each dot
indicates a single trial. Black lines indicate the median estimation error. Right, estimation error as a function of likelihood width.
Each dot indicates a single trial; color indicates stimulus family. Solid black line indicates the theoretically expected relationship
between the variance of estimation error and likelihood width. Dashed line indicates empirically observed variance of estimation
error calculated as a moving standard deviation of 100 trials sorted by likelihood width. (f) Average absolute estimation error per
stimulus family and population as a function of the average likelihood width. Observations from population 1 are highlighted with
a black outline. (g) Population Fisher information plotted against average likelihood width, same conventions as panel f.
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Figure 3 Evaluating different candidate metrics of uncertainty (a) Percent error in recovery of the ground truth value of each direct
and inferred metric for simulated populations of various sizes. (b) Spearman rank correlation between candidate uncertainty
metrics and population Fisher information. Light colors correspond to direct metrics; dark colors correspond to inferred metrics.
Error bars indicate 75% confidence intervals of bootstrapped correlation values. The dashed line indicates the rank correlation
between likelihood width and Fisher information with 75% confidence interval of bootstrapped correlation values indicated with
a gray band. (c) Left/top, example sequence of stimuli for experiment 1. Stimuli randomly varied in orientation, family, and
noise seed. Left/bottom, bar plot indicating the association between candidate neural metrics of uncertainty and likelihood width.
Right/top Example sequence of stimuli for experiment 2. A single orientation, family, and noise seed defined a stimulus that was
over-represented relative to all other stimulus conditions. Only trials in which this stimulus was shown were analyzed. Right/
bottom, bar plot indicating the association between candidate neural metrics of uncertainty and likelihood width for these trials.
Error bars indicate interquartile range.
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Figure 4 Comparison of partial correlations between three candidate metrics and the decoder’s stimulus uncertainty. (a) Left,
population rate is plotted against gain-variability for an example population. Each point represents a single trial. Colored points
indicate 50 consecutive rank-sorted trials. The two highlighted example sets of data points have identical variance in the non-
frozen metric (�2 = 0.35). Middle, relationship between gain variability and likelihood width for an example set of trials in which
the population rate was kept constant (i.e., the orange trials in the left panel). Right, relationship between population rate and
likelihood width for an example set of trials in which gain variability was kept constant (i.e., the pink trials in the left panel).
(b) Distribution of partial correlations across all experiment 1 recordings for population rate and gain variability (left), response
dispersion and gain variability (middle), and response dispersion and population rate (right). (c) Same as panel b for Expt 2.
Triangles represent mean correlation; *** P < 0.001, Wilcoxon Rank Sum Test.
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Figure 5 Artificial neural network prediction of likelihood width. (a) ANNs were trained on per-trial vectors of spike counts to
predict the width of the likelihood function. (b) Boxplots indicate association of network predicted and ground truth likelihood
width per population across the set of networks for experiment 1 (left) and experiment 2 (right). Box indicates interquartile range.
Solid black lines indicate the central 95% of the distribution. Black dots indicate outlier networks. Orange dots indicate inferred
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Supplementary Information571

Further analysis of the impact of noise correlations on orientation coding572

In visual cortex, trial-to-trial response fluctuations are often correlated among neurons39. It is well-known that these so-called573

‘noise correlations’ can impact the coding capacity of neural populations, though this need not be the case40. In our data, we574

found little evidence for a systematic impact of noise correlations on orientation coding. The values we observed are in line575

with earlier findings: small, but positive on average, with a substantial spread across neuronal pairs (median values ranged from576

0.11 to 0.13 across stimulus families; Supplementary Fig.1a). To assess the impact of noise correlations, we first computed577

Fisher Information on responses that were randomly shuffled across repeated trials of the same condition. This procedure578

removes noise correlations but did not systematically alter population Fisher information. This can be seen for an example579

population (Supplementary Fig.1b), and also held true across populations (Supplementary Fig.1c). To further test if noise580

correlations have an impact on coding quality, we trained ANNs to estimate stimulus orientation from single trial population581

responses (see Supplementary Methods). One network variant was trained on condition shuffled spike counts ("correlation582

blind decoder") while the other was trained on observed spike counts ("correlation aware decoder"). Each variant was tested583

on unshuffled held out responses. If noise correlations impact coding capacity, we would expect the correlation blind decoder584

to perform systematically worse. This was not the case. The median estimation error was comparable across both decoders585

(Supplementary Fig.1d).586
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Supplementary Figure 1 Noise correlations have negligible effect on Fisher information and estimation error (a) Histogram of
pairwise noise correlation values for an example population (same population as shown in Fig.1). High contrast/ low orientation
dispersion stimuli: median value = 0.11 (upper left, dark red); high contrast/ high dispersion stimuli: median value = 0.13 (lower
left, dark blue); low contrast/ low dispersion stimuli: median = 0.12 (upper right, light red); low contrast / high dispersion stimuli:
median = 0.13 (lower right, light blue). *** P < 0.001, Wilcoxon signed-rank test. (b) Shuffled population information (solid
lines) as a function of stimulus orientation for example population. Dashed lines indicate non-shuffled population FI. (c) Shuffled
population FI per stimulus family and population compared to population FI. (d) Median absolute decoding error for a correlation
aware (abscissa) and correlation blind (ordinate). Each point summarizes results for a single population. One outlier population
is not shown. Error bars indicate ± SEM.
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The stochastic normalization model: parameter estimates587

We fit responses of each unit with a previously proposed model of V1 function (the stochastic normalization model). This model588

has 11 free parameters in total (see Methods). Parameter estimates varied across units, reflecting inter-neuronal differences in589

the operations that shape neural stimulus selectivity, response nonlinearities, and response variability (Supplementary Fig.2).590
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Supplementary Figure 2 Histogram of stochastic normalization model parameters; n = 352 units. (a) �✏: Normalization noise
parameter. (b) e1: Multiplicative parameter contributing to maintained discharge. (c) �: response scalar. (d) ✓o: preferred
orientation. (e) ↵: spatial aspect ratio. (f) �: stimulus independent constant. (g) d: direction selectivity. (h) q exponent.
(i) Degree to which normalization signal depends on stimulus dispersion. Values of one indicate no effect. (j) e2: additive
maintained discharge. (k) b: derivative order.

The likelihood function yields unbiased stimulus orientation estimates591

We developed a decoding method to infer stimulus orientation from V1 population activity on a trial-by-trial basis. For each592

trial, we computed the orientation likelihood function. The maximum of this function provides a point estimate for stimulus593

orientation, while the spread of this function indicates the uncertainty of this estimate. This decoding method is unbiased: it594

yields orientation estimates that, on average, are correct (Supplementary Fig.3).595
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Supplementary Figure 3 Estimating stimulus orientation from decoded V1 population activity. (a) Average orientation estimates
as a function of ground truth stimulus orientation for an example population. Each panel summarizes results for a different
stimulus family: high contrast/ low orientation dispersion stimuli (upper left, dark red); high contrast/ high dispersion stimuli
(lower left, dark blue); low contrast/ low dispersion stimuli (upper right, light red); low contrast / high dispersion stimuli (lower
right, light blue). Error bars indicate mean ± 1 SD. On average, orientation estimates are unbiased; all points are close to the
line of unity. Note that the variance of the estimates increases with decreasing population FI. (b) Average orientation estimates
as a function of ground truth stimulus orientation for all recordings. Error bars indicate mean estimate ± 1 SD.

Decoding V1 population activity under a Poisson assumption596

The decoding method used in the main paper treats spikes as if they arise from a doubly stochastic process (specifically, a597

modulated Poisson process). We wondered how this aspect of the method influenced our findings. To address this, we decoded598

neural activity using a simplified variant of the method that assumes a single source of response variability (the Poisson process,599

see Supplementary methods). We computed the corresponding orientation likelihood function and performed the same analyses600

as in the main paper. Qualitatively, this procedure yielded highly similar results (Supplementary Fig.4a). Quantitatively, there601

was a systematic difference. The association between the candidate metrics and the width of the likelihood function was higher602

for the more complex decoder used in the main paper (Supplementary Fig.4b).603
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Supplementary Figure 4 Comparison of two decoding methods. (a) Association between candidate uncertainty metrics and
likelihood width of a Poisson decoder for experiment 1 (left) and experiment 2 (right). Error bars indicate interquartile range. (b)
Comparison of likelihood width association for the more complex decoding method (ordinate) and the simpler Poisson variant
(abscissa) for experiment 1 (left) and experiment 2 (right). Each dot represents a single candidate metric for one population.
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Further analysis of the role of inter-metric dependencies604

We identified various candidate neural metrics of uncertainty that exhibited modest-to-high associations with likelihood width.605

These metrics were highly correlated amongst themselves. For example, in population 1, the rank correlation between inferred606

response magnitude and gain variability across all trials is 0.79 (Supplementary Fig.5A, left). Of course, a randomly selected607

subset of trials may exhibit a different level of correlation (Supplementary Fig.5A, middle). We reasoned that this sampling608

variability offered an opportunity to test which metric was the strongest driver of the relationship with likelihood width. Specifi-609

cally, if a candidate metric is directly associated with likelihood width, the strength of this association should not systematically610

depend on the level of inter-metric correlation. To test this we drew 10,000 samples of 100 trials without replacement from611

the set of all trials for a population. Samples were included only if the difference in the variance of each metric fell below a612

threshold (see Supplementary Methods). We calculated the rank correlation between candidate metrics and likelihood width613

for each sample and sorted these values by inter-metric correlation (Supplementary Fig.5A, right). Inferred gain-variability did614

not depend much on inter-metric correlation, as evidence by the nearly horizontal slope of the orange line. In contrast, inferred615

response magnitude was only strongly associated with likelihood width when it was strongly correlated with gain variability616

(pink line). These results held true across all populations (Supplementary Fig.5B, left and middle), and were also evident for617

experiment 2 in which variability is largely due to internal fluctuations (Supplementary Fig.5C, left and middle).618
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Supplementary Figure 5 Studying inter-metric dependencies (a)(Left) Comparison of two z-scored inferred metrics for one
example population; Ordinate: �Ginf.; Abscissa: µinf.. Each dot is a single trial. (Middle) Two random samples of 100 trials from
the example population. The variance of inferred gain variability and inferred response magnitude is 1.11 and 1.10 respectively
(top) and 0.61 and 0.62 (bottom). (Right, top) Correlation of metric with likelihood width as a function of inter-metric correlation for
the example population. (Right, bottom) Distribution of correlation coefficients between two candidate metrics across all 10,000
samples. (b) Experiment 1: Cross population analysis for �Ginf. vs µinf. (left), �Ginf. vs �inf. (middle), and µinf. vs �inf. (right). (c)
Same as for b for experiment 2.
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SUPPLEMENTARY METHODS619

Comparing correlation-aware and correlation-blind decoders620

We trained two types of feed-forward multi-layer perceptron neural networks on trial-by-trial spike count vectors to predict621

ground truth stimulus orientation. All networks consisted of 40 hidden units per layer, the drop out rate between layers was622

0.2, the weight decay was 0.0, and the learning rate was 0.001. Input to orientation decoding networks were either spike623

counts which were shuffled randomly per neuron within a stimulus condition (defined as a specific combination of orienta-624

tion, contrast, and dispersion) or non-shuffled responses. We then assessed the orientation estimation quality for networks625

trained on shuffled responses ("correlation-blind" decoders) or non-shuffled responses ("correlation-aware" decoders) on the626

same held out non-shuffled validation data. We implemented networks with the TensorFlow framework with the AdamW opti-627

miser with an objective to minimize the mean squared error between ground truth and network-predicted orientation. As with628

the likelihood width predicting ANNs, for each configuration of hyper-parameters we trained five networks on 80% of trials629

(training/validation set) and obtained a cross-validated prediction on the held out 20% of trials, rotating trials between training630

and held out set such that each trial had a cross-validated prediction. We then computed and report held-out loss.631

Decoding V1 activity under a Poisson assumption632

We used the same decoding procedure and method of calculating likelihood width as in the main paper. The key difference was633

that the gain-variability term in eq. 7 was set to zero.634

Analysis of role of inter-metric dependencies635

In this analysis, we took a random sample of 100 trials from all trials in an experiment without replacement. We calculated636

the variance of two metrics for this sample of trials. If the difference in the variance of each metric was below a threshold637

(|�2
Metric 1 � �2

Metric 2| < 0.05), the Spearman rank correlation between each metric and the correlation of each metric with638

likelihood width was computed. We repeated the procedure 10,000 times.639
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